我希望通过选择正方形的3d表示的4个点来校正图像的透视图,并将它们映射到2d正方形的点。
我已经关注了两个非常丰富的例子,但是无法重现所需的结果,这里是原始的例子,以及我对jsfiddle的改编:
example 1(article describing the solution):此示例显示(在CoffeeScript中)如何更正视频的视角,因此此示例与我需要的非常相似。以下是我对它的改编,你必须从棋盘的左上角顺时针点击4个角:my jsfiddle adaptation
var srcImg, width, height, srcCvs, srcC, srcRect, dstCvs, dstC, widthToHeight;
var nbClicks = 0, coordinates = Array( 8 );
srcImg = document.getElementById( 'sourceImg' );
widthToHeight = srcImg.width / srcImg.height;
srcCvs = document.getElementById( 'sourceCanvas' );
srcC = srcCvs.getContext( '2d' );
dstCvs = document.getElementById( 'destinationCanvas' );
dstC = dstCvs.getContext( '2d' );
width = srcCvs.width = dstCvs.width = srcCvs.clientWidth;
height = srcCvs.height = dstCvs.height = srcCvs.clientWidth / widthToHeight;
srcRect = srcCvs.getBoundingClientRect();
srcC.strokeStyle = '#0f0';
srcC.drawImage( srcImg, 0, 0, width, height );
srcCvs.addEventListener( 'click', doClick, false );
function doClick( event ) {
if ( nbClicks < 4 ) {
coordinates[ nbClicks * 2 ] = ( event.clientX - srcRect.left ) * width / srcRect.width;
coordinates[ nbClicks * 2 + 1 ] = ( event.clientY - srcRect.top ) * height / srcRect.height;
srcC.strokeRect( coordinates[ nbClicks * 2 ] - 10, coordinates[ nbClicks * 2 + 1 ] - 10, 20, 20 );
}
if ( ++nbClicks == 4 ) {
dstC.beginPath();
dstC.moveTo( coordinates[ 0], coordinates[ 1 ] );
for( i = 1; i < 4; i ++ ) {
dstC.lineTo( coordinates[ i*2 ], coordinates[ i*2 + 1 ] );
}
dstC.closePath();
dstC.clip();
var t = getTransform( left, top, w, h );
dstCvs.style.visibility = 'visible';
dstC.drawImage( srcImg, 0, 0, width, height );
var left = 0, top = 0, w = width, h = width;
srcC.strokeStyle = '#f00';
srcC.strokeRect( left - 10, top - 10, 20, 20 );
srcC.strokeRect( left + w - 10, top - 10, 20, 20 );
srcC.strokeRect( left + w - 10, top + h - 10, 20, 20 );
srcC.strokeRect( left - 10, top + h - 10, 20, 20 );
alert( 'Clipped image is now drawn, going to apply transform after this alert.' );
var t = getTransform( left, top, w, w );
dstCvs.style.transform = t;
}
};
function getTransform( left, top, w, h ) {
var minX = Math.min( coordinates[ 0 ], coordinates[ 6 ] );
var minY = Math.min( coordinates[ 1 ], coordinates[ 3 ] );
var w = Math.max( Math.abs( coordinates[ 2 ] - coordinates[ 0 ] ), Math.abs( coordinates[ 6 ] - coordinates[ 4 ] ) );
var h = Math.max( Math.abs( coordinates[ 3 ] - coordinates[ 1 ] ), Math.abs( coordinates[ 7 ] - coordinates[ 5 ] ) );
var c = coordinates;
for ( var i = 0; i < 4; i ++ ) {
c[ i * 2 ] = coordinates[ i ] - minX;
c[ i * 2 + 1 ] = coordinates[ i * 2 + 1 ] - minY;
}
var l=t=0;
var from = c;
var to = [ left, top, left + w, top, left + w, top + h, left, top + h ];
A = [];
b = [];
for ( var i = 0; i < 4; i ++ ) {
A.push( [ from[ i * 2 ], from[ i * 2 + 1 ], 1, 0, 0, 0, -from[ i * 2 ] * to[ i * 2 ], -from[ i * 2 + 1 ] * to[ i * 2 ] ] );
A.push( [ 0, 0, 0, from[ i * 2 ], from[ i * 2 + 1 ], 1, -from[ i * 2 ] * to[ i * 2 + 1 ], -from[ i * 2 + 1 ] * to[ i * 2 + 1 ] ] );
b.push( to[ i * 2 ] );
b.push( to[ i * 2 + 1 ] );
}
h = numeric.solve(A, b);
H = [[h[0], h[1], 0, h[2]],
[h[3], h[4], 0, h[5]],
[ 0, 0, 1, 0],
[h[6], h[7], 0, 1]];
return "matrix3d(" + H.join(", ") + ")";
}
example 2(article describing the solution):此示例显示如何将透视应用于没有的元素,因此我的问题与此相反。然而,似乎一般变换将一组点应用于另一组,所以我的理解是这应该是等价的...但我可能在某处错了!在这里,您必须从棋盘的左上角开始顺时针点击4个角:my jsfiddle adaptation
var srcImg, width, height, srcCvs, srcC, srcRect, dstCvs, dstC, widthToHeight;
var nbClicks = 0, coordinates = Array( 8 );
srcImg = document.getElementById( 'sourceImg' );
widthToHeight = srcImg.width / srcImg.height;
srcCvs = document.getElementById( 'sourceCanvas' );
srcC = srcCvs.getContext( '2d' );
dstCvs = document.getElementById( 'destinationCanvas' );
dstC = dstCvs.getContext( '2d' );
width = srcCvs.width = dstCvs.width = srcCvs.clientWidth;
height = srcCvs.height = dstCvs.height = srcCvs.clientWidth / widthToHeight;
srcRect = srcCvs.getBoundingClientRect();
srcC.strokeStyle = '#0f0';
srcC.drawImage( srcImg, 0, 0, width, height );
srcCvs.addEventListener( 'click', doClick, false );
function doClick( event ) {
if ( nbClicks < 4 ) {
coordinates[ nbClicks * 2 ] = ( event.clientX - srcRect.left ) * width / srcRect.width;
coordinates[ nbClicks * 2 + 1 ] = ( event.clientY - srcRect.top ) * height / srcRect.height;
srcC.strokeRect( coordinates[ nbClicks * 2 ] - 10, coordinates[ nbClicks * 2 + 1 ] - 10, 20, 20 );
}
if ( ++nbClicks == 4 ) {
dstC.beginPath();
dstC.moveTo( coordinates[ 0], coordinates[ 1 ] );
for( i = 1; i < 4; i ++ ) {
dstC.lineTo( coordinates[ i*2 ], coordinates[ i*2 + 1 ] );
}
dstC.closePath();
dstC.clip();
dstCvs.style.visibility = 'visible';
dstC.drawImage( srcImg, 0, 0, width, height );
var left = 0, top = 0, w = width, h = width;
srcC.strokeStyle = '#f00';
srcC.strokeRect( left - 10, top - 10, 20, 20 );
srcC.strokeRect( left + w - 10, top - 10, 20, 20 );
srcC.strokeRect( left + w - 10, top + h - 10, 20, 20 );
srcC.strokeRect( left - 10, top + h - 10, 20, 20 );
alert( 'Clipped image is now drawn, going to apply transform after this alert. On the left canvas, the positions of the mapped points are drawn in red.' );
var t = getTransform( left, top, w, h );
dstCvs.style.transform = t;
}
};
function adj(m) { // Compute the adjugate of m
return [
m[4]*m[8]-m[5]*m[7], m[2]*m[7]-m[1]*m[8], m[1]*m[5]-m[2]*m[4],
m[5]*m[6]-m[3]*m[8], m[0]*m[8]-m[2]*m[6], m[2]*m[3]-m[0]*m[5],
m[3]*m[7]-m[4]*m[6], m[1]*m[6]-m[0]*m[7], m[0]*m[4]-m[1]*m[3]
];
}
function multmm(a, b) { // multiply two matrices
var c = Array(9);
for (var i = 0; i != 3; ++i) {
for (var j = 0; j != 3; ++j) {
var cij = 0;
for (var k = 0; k != 3; ++k) {
cij += a[3*i + k]*b[3*k + j];
}
c[3*i + j] = cij;
}
}
return c;
}
function multmv(m, v) { // multiply matrix and vector
return [
m[0]*v[0] + m[1]*v[1] + m[2]*v[2],
m[3]*v[0] + m[4]*v[1] + m[5]*v[2],
m[6]*v[0] + m[7]*v[1] + m[8]*v[2]
];
}
function pdbg(m, v) {
var r = multmv(m, v);
return r + " (" + r[0]/r[2] + ", " + r[1]/r[2] + ")";
}
function basisToPoints(x1, y1, x2, y2, x3, y3, x4, y4) {
var m = [
x1, x2, x3,
y1, y2, y3,
1, 1, 1
];
var v = multmv(adj(m), [x4, y4, 1]);
return multmm(m, [
v[0], 0, 0,
0, v[1], 0,
0, 0, v[2]
]);
}
function general2DProjection(
x1s, y1s, x1d, y1d,
x2s, y2s, x2d, y2d,
x3s, y3s, x3d, y3d,
x4s, y4s, x4d, y4d
) {
var s = basisToPoints(x1s, y1s, x2s, y2s, x3s, y3s, x4s, y4s);
var d = basisToPoints(x1d, y1d, x2d, y2d, x3d, y3d, x4d, y4d);
return multmm(d, adj(s));
}
function project(m, x, y) {
var v = multmv(m, [x, y, 1]);
return [v[0]/v[2], v[1]/v[2]];
}
function getTransform( left, top, w, h ) {
var x1 = coordinates[ 0 ], y1 = coordinates[ 1 ];
var x2 = coordinates[ 2 ], y2 = coordinates[ 3 ];
var x3 = coordinates[ 4 ], y3 = coordinates[ 5 ];
var x4 = coordinates[ 6 ], y4 = coordinates[ 7 ];
var t = general2DProjection
(left, top, x1, y1, w, top, x2, y2, w, h, x3, y3, left, h, x4, y4);
for(i = 0; i != 9; ++i) t[i] = t[i]/t[8];
t = [t[0], t[3], 0, t[6],
t[1], t[4], 0, t[7],
0 , 0 , 1, 0 ,
t[2], t[5], 0, t[8]];
t = "matrix3d(" + t.join(", ") + ")";
return t;
}
尝试尽可能清楚:在我的两个改编中,我点击棋盘的4个角落,由于透视而扭曲,第4次点击触发剪裁到该四边形然后计算并应用变换其目标是使扭曲的四边形回到2d方格。
谢谢,Tepp。
答案 0 :(得分:0)
关于堆栈溢出的这个答案似乎可以做你想要的,即“逆透视变换”: Redraw image from 3d perspective to 2d
正如你所看到的,答案的作者(你在例2中引用的那个)使用了不同的逆变换方程:C = A∙B -1而不是C = B∙A -1
答案 1 :(得分:0)
我不知道您是否需要从头开始,但您可以尝试使用诸如 Homography.js 之类的东西。这样,您就可以这样转换您的图像:
const myHomography = new Homography("projective");
myHomography.setReferencePoints(srcPoints, dstPoints);
const transformedImg = myHomography.warp(srcImg);
然后您可以通过执行... dstC.putImageData(transformedImg, 0, 0);
或类似的操作直接在画布中绘制图像
import { Homography } from "https://cdn.jsdelivr.net/gh/Eric-Canas/Homography.js@1.1/Homography.js";
const transformedImg = myHomography.warp(srcImg, true)
dstC.drawImage(transformedImg);