连接两个PySpark数据帧

时间:2016-05-19 19:29:33

标签: python apache-spark pyspark

我正在尝试将两个PySpark数据框连接到一些只在每个上面的列:

from pyspark.sql.functions import randn, rand

df_1 = sqlContext.range(0, 10)

+--+
|id|
+--+
| 0|
| 1|
| 2|
| 3|
| 4|
| 5|
| 6|
| 7|
| 8|
| 9|
+--+

df_2 = sqlContext.range(11, 20)

+--+
|id|
+--+
| 10|
| 11|
| 12|
| 13|
| 14|
| 15|
| 16|
| 17|
| 18|
| 19|
+--+

df_1 = df_1.select("id", rand(seed=10).alias("uniform"), randn(seed=27).alias("normal"))
df_2 = df_2.select("id", rand(seed=10).alias("uniform"), randn(seed=27).alias("normal_2"))

现在我想生成第三个数据帧。我想像pandas concat

df_1.show()
+---+--------------------+--------------------+
| id|             uniform|              normal|
+---+--------------------+--------------------+
|  0|  0.8122802274304282|  1.2423430583597714|
|  1|  0.8642043127063618|  0.3900018344856156|
|  2|  0.8292577771850476|  1.8077401259195247|
|  3|   0.198558705368724| -0.4270585782850261|
|  4|0.012661361966674889|   0.702634599720141|
|  5|  0.8535692890157796|-0.42355804115129153|
|  6|  0.3723296190171911|  1.3789648582622995|
|  7|  0.9529794127670571| 0.16238718777444605|
|  8|  0.9746632635918108| 0.02448061333761742|
|  9|   0.513622008243935|  0.7626741803250845|
+---+--------------------+--------------------+

df_2.show()
+---+--------------------+--------------------+
| id|             uniform|            normal_2|
+---+--------------------+--------------------+
| 11|  0.3221262660507942|  1.0269298899109824|
| 12|  0.4030672316912547|   1.285648175568798|
| 13|  0.9690555459609131|-0.22986601831364423|
| 14|0.011913836266515876|  -0.678915153834693|
| 15|  0.9359607054250594|-0.16557488664743034|
| 16| 0.45680471157575453| -0.3885563551710555|
| 17|  0.6411908952297819|  0.9161177183227823|
| 18|  0.5669232696934479|  0.7270125277020573|
| 19|   0.513622008243935|  0.7626741803250845|
+---+--------------------+--------------------+

#do some concatenation here, how?

df_concat.show()

| id|             uniform|              normal| normal_2   |
+---+--------------------+--------------------+------------+
|  0|  0.8122802274304282|  1.2423430583597714| None       |
|  1|  0.8642043127063618|  0.3900018344856156| None       |
|  2|  0.8292577771850476|  1.8077401259195247| None       |
|  3|   0.198558705368724| -0.4270585782850261| None       |
|  4|0.012661361966674889|   0.702634599720141| None       |
|  5|  0.8535692890157796|-0.42355804115129153| None       |
|  6|  0.3723296190171911|  1.3789648582622995| None       |
|  7|  0.9529794127670571| 0.16238718777444605| None       |
|  8|  0.9746632635918108| 0.02448061333761742| None       |
|  9|   0.513622008243935|  0.7626741803250845| None       |
| 11|  0.3221262660507942|  None              | 0.123      |
| 12|  0.4030672316912547|  None              |0.12323     |
| 13|  0.9690555459609131|  None              |0.123       |
| 14|0.011913836266515876|  None              |0.18923     |
| 15|  0.9359607054250594|  None              |0.99123     |
| 16| 0.45680471157575453|  None              |0.123       |
| 17|  0.6411908952297819|  None              |1.123       |
| 18|  0.5669232696934479|  None              |0.10023     |
| 19|   0.513622008243935|  None              |0.916332123 |
+---+--------------------+--------------------+------------+

这可能吗?

12 个答案:

答案 0 :(得分:39)

也许您可以尝试创建不存在的列并为Spark 1.6或更低版本调用unionunionAll):

cols = ['id', 'uniform', 'normal', 'normal_2']    

df_1_new = df_1.withColumn("normal_2", lit(None)).select(cols)
df_2_new = df_2.withColumn("normal", lit(None)).select(cols)

result = df_1_new.union(df_2_new)

答案 1 :(得分:27)

df_concat = df_1.union(df_2)

数据框可能需要包含相同的列,在这种情况下,您可以使用withColumn()创建normal_1normal_2

答案 2 :(得分:4)

unionByName 是 spark 2.3.0 中可用的内置选项。

spark 3.1.0 版 中,有 allowMissingColumns 选项,默认值设置为 False 以处理缺失的列。即使两个数据帧没有相同的列集,这个函数也能工作,在结果数据帧中将缺失的列值设置为空。

df_1.unionByName(df_2, allowMissingColumns=True).show()

+---+--------------------+--------------------+--------------------+
| id|             uniform|              normal|            normal_2|
+---+--------------------+--------------------+--------------------+
|  0|  0.8122802274304282|  1.2423430583597714|                null|
|  1|  0.8642043127063618|  0.3900018344856156|                null|
|  2|  0.8292577771850476|  1.8077401259195247|                null|
|  3|   0.198558705368724| -0.4270585782850261|                null|
|  4|0.012661361966674889|   0.702634599720141|                null|
|  5|  0.8535692890157796|-0.42355804115129153|                null|
|  6|  0.3723296190171911|  1.3789648582622995|                null|
|  7|  0.9529794127670571| 0.16238718777444605|                null|
|  8|  0.9746632635918108| 0.02448061333761742|                null|
|  9|   0.513622008243935|  0.7626741803250845|                null|
| 11|  0.3221262660507942|                null|  1.0269298899109824|
| 12|  0.4030672316912547|                null|   1.285648175568798|
| 13|  0.9690555459609131|                null|-0.22986601831364423|
| 14|0.011913836266515876|                null|  -0.678915153834693|
| 15|  0.9359607054250594|                null|-0.16557488664743034|
| 16| 0.45680471157575453|                null| -0.3885563551710555|
| 17|  0.6411908952297819|                null|  0.9161177183227823|
| 18|  0.5669232696934479|                null|  0.7270125277020573|
| 19|   0.513622008243935|                null|  0.7626741803250845|
+---+--------------------+--------------------+--------------------+

答案 3 :(得分:3)

这是一种方法,如果它仍然有用:我在pyspark shell中运行它,Python版本2.7.12,我的Spark安装版本是2.0.1。

PS:我想你的意思是为df_1 df_2使用不同的种子,下面的代码反映了这一点。

from pyspark.sql.types import FloatType
from pyspark.sql.functions import randn, rand
import pyspark.sql.functions as F

df_1 = sqlContext.range(0, 10)
df_2 = sqlContext.range(11, 20)
df_1 = df_1.select("id", rand(seed=10).alias("uniform"), randn(seed=27).alias("normal"))
df_2 = df_2.select("id", rand(seed=11).alias("uniform"), randn(seed=28).alias("normal_2"))

def get_uniform(df1_uniform, df2_uniform):
    if df1_uniform:
        return df1_uniform
    if df2_uniform:
        return df2_uniform

u_get_uniform = F.udf(get_uniform, FloatType())

df_3 = df_1.join(df_2, on = "id", how = 'outer').select("id", u_get_uniform(df_1["uniform"], df_2["uniform"]).alias("uniform"), "normal", "normal_2").orderBy(F.col("id"))

以下是我得到的输出:

df_1.show()
+---+-------------------+--------------------+
| id|            uniform|              normal|
+---+-------------------+--------------------+
|  0|0.41371264720975787|  0.5888539012978773|
|  1| 0.7311719281896606|  0.8645537008427937|
|  2| 0.1982919638208397| 0.06157382353970104|
|  3|0.12714181165849525|  0.3623040918178586|
|  4| 0.7604318153406678|-0.49575204523675975|
|  5|0.12030715258495939|  1.0854146699817222|
|  6|0.12131363910425985| -0.5284523629183004|
|  7|0.44292918521277047| -0.4798519469521663|
|  8| 0.8898784253886249| -0.8820294772950535|
|  9|0.03650707717266999| -2.1591956435415334|
+---+-------------------+--------------------+

df_2.show()
+---+-------------------+--------------------+
| id|            uniform|            normal_2|
+---+-------------------+--------------------+
| 11| 0.1982919638208397| 0.06157382353970104|
| 12|0.12714181165849525|  0.3623040918178586|
| 13|0.12030715258495939|  1.0854146699817222|
| 14|0.12131363910425985| -0.5284523629183004|
| 15|0.44292918521277047| -0.4798519469521663|
| 16| 0.8898784253886249| -0.8820294772950535|
| 17| 0.2731073068483362|-0.15116027592854422|
| 18| 0.7784518091224375| -0.3785563841011868|
| 19|0.43776394586845413| 0.47700719174464357|
+---+-------------------+--------------------+

df_3.show()
+---+-----------+--------------------+--------------------+                     
| id|    uniform|              normal|            normal_2|
+---+-----------+--------------------+--------------------+
|  0| 0.41371265|  0.5888539012978773|                null|
|  1|  0.7311719|  0.8645537008427937|                null|
|  2| 0.19829196| 0.06157382353970104|                null|
|  3| 0.12714182|  0.3623040918178586|                null|
|  4|  0.7604318|-0.49575204523675975|                null|
|  5|0.120307155|  1.0854146699817222|                null|
|  6| 0.12131364| -0.5284523629183004|                null|
|  7| 0.44292918| -0.4798519469521663|                null|
|  8| 0.88987845| -0.8820294772950535|                null|
|  9|0.036507078| -2.1591956435415334|                null|
| 11| 0.19829196|                null| 0.06157382353970104|
| 12| 0.12714182|                null|  0.3623040918178586|
| 13|0.120307155|                null|  1.0854146699817222|
| 14| 0.12131364|                null| -0.5284523629183004|
| 15| 0.44292918|                null| -0.4798519469521663|
| 16| 0.88987845|                null| -0.8820294772950535|
| 17| 0.27310732|                null|-0.15116027592854422|
| 18|  0.7784518|                null| -0.3785563841011868|
| 19| 0.43776396|                null| 0.47700719174464357|
+---+-----------+--------------------+--------------------+

答案 4 :(得分:3)

要将多个pyspark数据帧连接为一个:

from functools import reduce

reduce(lambda x,y:x.union(y), [df_1,df_2])

您可以将[df_1,df_2]列表替换为任意长度的列表。

答案 5 :(得分:2)

您可以使用unionByName来做到这一点:

df = df_1.unionByName(df_2)

unionByName自Spark 2.3.0起可用。

答案 6 :(得分:1)

以上答案非常优雅。我已经编写了这个函数很久以前我还在努力将两个数据帧连接到不同的列。

假设您有数据帧sdf1和sdf2

from pyspark.sql import functions as F
from pyspark.sql.types import *

def unequal_union_sdf(sdf1, sdf2):
    s_df1_schema = set((x.name, x.dataType) for x in sdf1.schema)
    s_df2_schema = set((x.name, x.dataType) for x in sdf2.schema)

    for i,j in s_df2_schema.difference(s_df1_schema):
        sdf1 = sdf1.withColumn(i,F.lit(None).cast(j))

    for i,j in s_df1_schema.difference(s_df2_schema):
        sdf2 = sdf2.withColumn(i,F.lit(None).cast(j))

    common_schema_colnames = sdf1.columns
    sdk = \
        sdf1.select(common_schema_colnames).union(sdf2.select(common_schema_colnames))
    return sdk 

sdf_concat = unequal_union_sdf(sdf1, sdf2) 

答案 7 :(得分:1)

为了更通用,将两个列都保留在df1df2中:

import pyspark.sql.functions as F

# Keep all columns in either df1 or df2
def outter_union(df1, df2):

    # Add missing columns to df1
    left_df = df1
    for column in set(df2.columns) - set(df1.columns):
        left_df = left_df.withColumn(column, F.lit(None))

    # Add missing columns to df2
    right_df = df2
    for column in set(df1.columns) - set(df2.columns):
        right_df = right_df.withColumn(column, F.lit(None))

    # Make sure columns are ordered the same
    return left_df.union(right_df.select(left_df.columns))

答案 8 :(得分:0)

这应该为你做...

from pyspark.sql.types import FloatType
from pyspark.sql.functions import randn, rand, lit, coalesce, col
import pyspark.sql.functions as F

df_1 = sqlContext.range(0, 6)
df_2 = sqlContext.range(3, 10)
df_1 = df_1.select("id", lit("old").alias("source"))
df_2 = df_2.select("id")

df_1.show()
df_2.show()
df_3 = df_1.alias("df_1").join(df_2.alias("df_2"), df_1.id == df_2.id, "outer")\
  .select(\
    [coalesce(df_1.id, df_2.id).alias("id")] +\
    [col("df_1." + c) for c in df_1.columns if c != "id"])\
  .sort("id")
df_3.show()

答案 9 :(得分:0)

我是一位Dhh转变为pyspark开发人员。 下面是我会做的:

    from pyspark.sql import SparkSession
    df_1.createOrReplaceTempView("tab_1")
    df_2.createOrReplaceTempView("tab_2")
    df_concat=spark.sql("select tab_1.id,tab_1.uniform,tab_1.normal,tab_2.normal_2  from tab_1 tab_1 left join tab_2 tab_2 on tab_1.uniform=tab_2.uniform\
                union\
                select tab_2.id,tab_2.uniform,tab_1.normal,tab_2.normal_2  from tab_2 tab_2 left join tab_1 tab_1 on tab_1.uniform=tab_2.uniform")
    df_concat.show()

-请让我知道这是否对您有用或您是否需要。

答案 10 :(得分:0)

我试图在pyspark中实现pandas追加功能,我创建了一个自定义功能,即使它们的编号不同,我们也可以连接2个或更多数据帧。列的唯一条件是,如果数据框具有相同的名称,则它们的数据类型应该相同/匹配。

我写了一个自定义函数来合并2个数据框。

def append_dfs(df1,df2): list1 = df1.columns list2 = df2.columns 对于list2中的col: 如果(不在列表1中) df1 = df1.withColumn(col,F.lit(None)) 对于list1中的col: 如果(不在列表2中): df2 = df2.withColumn(col,F.lit(None)) 返回df1.unionByName(df2)

用法:

  1. 连接2个数据框

final_df = append_dfs(df1,df2)

    1. 连接多个2(say3)个数据帧

final_df = append_dfs(append_dfs(df1,df2),df3)

示例:

df1:

enter image description here

df2:

enter image description here

result = append_dfs(df1,df2)

结果:

+------+---+-------+---------+
|  Name|Age|Married|  Address|
+------+---+-------+---------+
|   Jai| 27|   true|     null|
|Princi| 24|  false|     null|
|Gaurav| 22|  false|     null|
|  Anuj| 22|   true|     null|
|   Jai| 27|   null|    Delhi|
|Princi| 24|   null|   Kanpur|
|Gaurav| 22|   null|Allahabad|
|  Anuj| 22|   null|     null|
+------+---+-------+---------+

希望这会有用。

答案 11 :(得分:-1)

也许,您想要连接更多的两个Dataframe。 我发现了一个使用pandas Dataframe转换的问题。

假设你有3个想要连接的spark数据帧。

代码如下:

list_dfs = []
list_dfs_ = []

df = spark.read.json('path_to_your_jsonfile.json',multiLine = True)
df2 = spark.read.json('path_to_your_jsonfile2.json',multiLine = True)
df3 = spark.read.json('path_to_your_jsonfile3.json',multiLine = True)

list_dfs.extend([df,df2,df3])

for df in list_dfs : 

    df = df.select([column for column in df.columns]).toPandas()
    list_dfs_.append(df)

list_dfs.clear()

df_ = sqlContext.createDataFrame(pd.concat(list_dfs_))