正如标题所示,Pandas中ols命令中的滚动功能选项在statsmodels中迁移到哪里?我似乎无法找到它。 熊猫告诉我厄运正在进行中:
netstat
事实上,如果你做了类似的事情:
FutureWarning: The pandas.stats.ols module is deprecated and will be removed in a future version. We refer to external packages like statsmodels, see some examples here: http://statsmodels.sourceforge.net/stable/regression.html
model = pd.ols(y=series_1, x=mmmm, window=50)
你得到的结果(窗口不会影响代码的运行)但你只得到整个时期的回归运行参数,而不是它应该应该工作的每个滚动周期的一系列参数
答案 0 :(得分:9)
我创建了一个ols
模块,旨在模仿大熊猫'已弃用MovingOLS
;它是here。
它有三个核心类:
OLS
:静态(单窗口)普通最小二乘回归。输出是NumPy数组RollingOLS
:滚动(多窗口)普通最小二乘回归。输出是更高维度的NumPy数组。PandasRollingOLS
:将RollingOLS
的结果包含在pandas系列& DataFrames。旨在模仿已弃用的pandas模块的外观。请注意,该模块是package(我目前正在上传到PyPi的过程中)的一部分,它需要一个包间导入。
上面的前两个类完全在NumPy中实现,主要使用矩阵代数。 RollingOLS
也广泛利用广播。属性很大程度上模仿了statsmodels' OLS RegressionResultsWrapper
。
一个例子:
import urllib.parse
import pandas as pd
from pyfinance.ols import PandasRollingOLS
# You can also do this with pandas-datareader; here's the hard way
url = "https://fred.stlouisfed.org/graph/fredgraph.csv"
syms = {
"TWEXBMTH" : "usd",
"T10Y2YM" : "term_spread",
"GOLDAMGBD228NLBM" : "gold",
}
params = {
"fq": "Monthly,Monthly,Monthly",
"id": ",".join(syms.keys()),
"cosd": "2000-01-01",
"coed": "2019-02-01",
}
data = pd.read_csv(
url + "?" + urllib.parse.urlencode(params, safe=","),
na_values={"."},
parse_dates=["DATE"],
index_col=0
).pct_change().dropna().rename(columns=syms)
print(data.head())
# usd term_spread gold
# DATE
# 2000-02-01 0.012580 -1.409091 0.057152
# 2000-03-01 -0.000113 2.000000 -0.047034
# 2000-04-01 0.005634 0.518519 -0.023520
# 2000-05-01 0.022017 -0.097561 -0.016675
# 2000-06-01 -0.010116 0.027027 0.036599
y = data.usd
x = data.drop('usd', axis=1)
window = 12 # months
model = PandasRollingOLS(y=y, x=x, window=window)
print(model.beta.head()) # Coefficients excluding the intercept
# term_spread gold
# DATE
# 2001-01-01 0.000033 -0.054261
# 2001-02-01 0.000277 -0.188556
# 2001-03-01 0.002432 -0.294865
# 2001-04-01 0.002796 -0.334880
# 2001-05-01 0.002448 -0.241902
print(model.fstat.head())
# DATE
# 2001-01-01 0.136991
# 2001-02-01 1.233794
# 2001-03-01 3.053000
# 2001-04-01 3.997486
# 2001-05-01 3.855118
# Name: fstat, dtype: float64
print(model.rsq.head()) # R-squared
# DATE
# 2001-01-01 0.029543
# 2001-02-01 0.215179
# 2001-03-01 0.404210
# 2001-04-01 0.470432
# 2001-05-01 0.461408
# Name: rsq, dtype: float64
答案 1 :(得分:6)
使用sklearn滚动测试版
^ : start of string
[^{\r\n]+ : 1 or more character that is not left curly brace or line break
\{ : left curly brace, must be escape as it is a special character
\R : any kind of line break
\} : right curly brace, must be escape as it is a special character
答案 2 :(得分:0)
为完整性添加更快速numpy
- 仅限计算仅限于回归系数和最终估算的解决方案
Numpy滚动回归函数
import numpy as np
def rolling_regression(y, x, window=60):
"""
y and x must be pandas.Series
"""
# === Clean-up ============================================================
x = x.dropna()
y = y.dropna()
# === Trim acc to shortest ================================================
if x.index.size > y.index.size:
x = x[y.index]
else:
y = y[x.index]
# === Verify enough space =================================================
if x.index.size < window:
return None
else:
# === Add a constant if needed ========================================
X = x.to_frame()
X['c'] = 1
# === Loop... this can be improved ====================================
estimate_data = []
for i in range(window, x.index.size+1):
X_slice = X.values[i-window:i,:] # always index in np as opposed to pandas, much faster
y_slice = y.values[i-window:i]
coeff = np.dot(np.dot(np.linalg.inv(np.dot(X_slice.T, X_slice)), X_slice.T), y_slice)
estimate_data.append(coeff[0] * x.values[window-1] + coeff[1])
# === Assemble ========================================================
estimate = pandas.Series(data=estimate_data, index=x.index[window-1:])
return estimate
备注强>
在某些特定用例中,只需要对回归进行最终估算,x.rolling(window=60).apply(my_ols)
似乎有点慢
提醒一下,回归的系数可以计算为矩阵乘积,您可以在wikipedia's least squares page上阅读。这种方法通过numpy
的矩阵乘法可以比使用statsmodels
中的ols有所加快。此产品以coeff = ...
答案 3 :(得分:0)
对于一列中的滚动趋势,只需使用:
import numpy as np
def calc_trend(window:int = 30):
df['trend'] = df.rolling(window = window)['column_name'].apply(lambda x: np.polyfit(np.array(range(0,window)), x, 1)[0], raw=True)
但是,在我的情况下,我浪费时间来查找有关日期的趋势,而日期在另一列中。我必须手动创建功能,但这很容易。首先,将TimeDate转换为表示从t_0开始的天数的int64:
xdays = (df['Date'].values.astype('int64') - df['Date'][0].value) / (1e9*86400)
然后:
def calc_trend(window:int=30):
for t in range(len(df)):
if t < window//2:
continue
i0 = t - window//2 # Start window
i1 = i0 + window # End window
xvec = xdays[i0:i1]
yvec = df['column_name'][i0:i1].values
df.loc[t,('trend')] = np.polyfit(xvec, yvec, 1)[0]