我是caffe框架的新手,我想使用caffe来实现多标签的培训。我使用两个LMDB分别保存数据和标签。数据LMDB的尺寸为Nx1xHxW,而标签LMDB的尺寸为Nx1x1x3。标签是浮动数据。
文本文件如下:
5911 3
train/train_data/4224.bmp 13 0 12
train/train_data/3625.bmp 11 3 7
... ...
我使用C ++创建LMDB。我的main.cpp:
#include <algorithm>
#include <fstream> // NOLINT(readability/streams)
#include <string>
#include <utility>
#include <vector>
#include <QImage>
#include "boost/scoped_ptr.hpp"
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/db.hpp"
#include "caffe/util/format.hpp"
#include "caffe/util/rng.hpp"
#include <boost/filesystem.hpp>
#include <iomanip>
#include <iostream> // NOLINT(readability/streams)
#include <string>
#include "google/protobuf/message.h"
#include "caffe/common.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/format.hpp"
#ifndef CAFFE_TMP_DIR_RETRIES
#define CAFFE_TMP_DIR_RETRIES 100
#endif
using namespace caffe; // NOLINT(build/namespaces)
using std::pair;
using boost::scoped_ptr;
const char *dat_lab="/home/mul/caffe-master/examples/2D_3D/new/info/train.data";
string data_db="/home/mul/caffe-master/examples/2D_3D/new/2D_3D_data_leveldb";
string label_db="/home/mul/caffe-master/examples/2D_3D/new/2D_3D_label_leveldb";
string root="/home/mul/caffe-master/examples/2D_3D/new/";
string path;
int main()
{
//Create data DB
scoped_ptr<db::DB> dat_db(db::GetDB("leveldb"));
dat_db->Open(data_db, db::NEW);
scoped_ptr<db::Transaction> dat_txn(dat_db->NewTransaction());
//Create label DB
scoped_ptr<db::DB> lab_db(db::GetDB("leveldb"));
lab_db->Open(label_db, db::NEW);
scoped_ptr<db::Transaction> lab_txn(lab_db->NewTransaction());
//Storing to db
Datum dat_datum,lab_datum;
int count=0;
std::ifstream infile(dat_lab);
std::string filename;
const char *dataname;
int dataNum;
int labelcount;
QImage img;
infile>>dataNum>>labelcount;
LOG(INFO) << "A total of " << dataNum<< " images.";
for (int line_id = 0; line_id < dataNum; ++line_id)
{
infile>>filename;
path=root+filename;
dataname=path.c_str();
img.load(dataname);
dat_datum.set_channels(1);
dat_datum.set_height(img.height());
dat_datum.set_width(img.width());
dat_datum.clear_data();
dat_datum.clear_float_data();
int datum_channels = dat_datum.channels();
int datum_height = dat_datum.height();
int datum_width = dat_datum.width();
int datum_size = datum_channels * datum_height * datum_width;
std::string buffer(datum_size, ' ');
const uchar* ptr = img.bits();
int img_index = 0;
for (int h = 0; h < datum_height; ++h)
{
for (int w = 0; w < datum_width; ++w)
{
for (int c = 0; c < datum_channels; ++c)
{
int datum_index = (c * datum_height + h) * datum_width + w;
buffer[datum_index] = static_cast<char>(ptr[img_index++]);
}
}
}
dat_datum.set_data(buffer);
lab_datum.set_channels(labelcount);
lab_datum.set_height(1);
lab_datum.set_width(1);
lab_datum.clear_data();
lab_datum.clear_float_data();
for(int i=0;i<labelcount;++i)
{
float mid;
infile>>mid;
lab_datum.add_float_data(mid);
}
// sequential
string key_str = caffe::format_int(line_id, 8);
// Put in db
string out;
CHECK(dat_datum.SerializeToString(&out));
dat_txn->Put(key_str, out);
CHECK(lab_datum.SerializeToString(&out));
lab_txn->Put(key_str, out);
if (++count % 1000 == 0)
{
// Commit db
dat_txn->Commit();
dat_txn.reset(dat_db->NewTransaction());
lab_txn->Commit();
lab_txn.reset(lab_db->NewTransaction());
LOG(INFO) << "Processed " << count << " files.";
}
}
// write the last batch
if (count % 1000 != 0)
{
dat_txn->Commit();
lab_txn->Commit();
LOG(INFO) << "Processed " << count << " files.";
}
return 0;
}
可以成功创建两个LMDB。但是当我使用caffe用两个LMDB实现训练时,结果总是错误的。损失层是EUCLIDEAN_LOSS并且损失不能下降。我不知道可以创建两个LMDB的代码是错误的。谁能帮我 ?谢谢。
答案 0 :(得分:2)
总的来说,上面的代码还可以,但你应该注意到:
最后,我添加了一个&#34; MultiTaskData&#34;图层MultiTaskDataLayer可以从基准面读取多标签以进行多任务培训,您可以进行简单的修改以将其添加到您的caffe中并使用如下:
name: "AgeNet"
layer {
name: "Age"
type: "MultiTaskData"
top: "data"
top: "age_label"
top: "gender_label"
data_param {
source: "age_gender_classification_0_60p_train_leveldb"
batch_size: 60
task_num: 2
label_dimension: 1
label_dimension: 1
}
transform_param {
scale: 0.00390625
crop_size: 60
mirror: true
}
include:{ phase: TRAIN }
}
layer {
name: "cls_age"
type: "InnerProduct"
bottom: "data"
top: "cls_age"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 7
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "age_loss"
type: "SoftmaxWithLoss"
bottom: "cls_age"
bottom: "age_label"
top: "age_loss"
include:{ phase: TRAIN }
}
layer {
name: "cls_gender"
type: "InnerProduct"
bottom: "data"
top: "cls_gender"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 2
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "gender_loss"
type: "SoftmaxWithLoss"
bottom: "cls_gender"
bottom: "gender_label"
top: "gender_loss"
include:{ phase: TRAIN }
}