我正在尝试运行mnist数据集的火炬教程,并且不太了解错误。这是我的代码(几乎只是带有mnist的教程,并添加了填充以纠正28!= 32):
加载数据
mnist = require 'mnist'
trainset = mnist.traindataset()
testset = mnist.testdataset()
setmetatable(trainset,
{__index = function(t, i)
return {t.data[i], t.label[i]}
end}
);
trainset.data = trainset.data:double() -- convert the data from a ByteTensor to a DoubleTensor.
function trainset:size()
return self.data:size(1)
end
归一化
mean = {}
stdv = {}
mean = trainset.data[{ {}, {}, {}}]:mean()
trainset.data[{ {}, {}, {} }]:add(-mean)
stdv = trainset.data[{ {}, {}, {} }]:std()
trainset.data[{ {}, {}, {} }]:div(stdv)
定义网络
require 'nn'
net = nn.Sequential()
net:add(nn.SpatialConvolution(1, 6, 5, 5, 1, 1, 2, 2)) -- 1 input image channel, 6 output channels, 5x5 convolution kernel
net:add(nn.ReLU()) -- non-linearity
net:add(nn.SpatialMaxPooling(2,2,2,2)) -- A max-pooling operation that looks at 2x2 windows and finds the max.
net:add(nn.SpatialConvolution(6, 16, 5, 5))
net:add(nn.ReLU()) -- non-linearity
net:add(nn.SpatialMaxPooling(2,2,2,2))
net:add(nn.View(16*5*5)) -- reshapes from a 3D tensor of 16x5x5 into 1D tensor of 16*5*5
net:add(nn.Linear(16*5*5, 120)) -- fully connected layer (matrix multiplication between input and weights)
net:add(nn.ReLU()) -- non-linearity
net:add(nn.Linear(120, 84))
net:add(nn.ReLU()) -- non-linearity
net:add(nn.Linear(84, 10)) -- 10 is the number of outputs of the network (in this case, 10 digits)
net:add(nn.LogSoftMax()) -- converts the output to a log-probability. Useful for classification problems
训练
criterion = nn.ClassNLLCriterion()
trainer = nn.StochasticGradient(net, criterion)
trainer.learningRate = 0.001
trainer.maxIteration = 5 -- just do 5 epochs of training.
trainer:train(trainset)
现在我收到以下错误信息。
# StochasticGradient: training .../torch/install/share/lua/5.1/nn/Container.lua:67:
In 1 module of nn.Sequential:
.../torch/install/share/lua/5.1/nn/THNN.lua:109: bad argument #2 to 'v' (3D or 4D (batch mode) tensor expected at .../torch/extra/nn/lib/THNN/generic/SpatialConvolutionMM.c:70)
stack traceback:
[C]: in function 'v'
.../torch/install/share/lua/5.1/nn/THNN.lua:109: in function 'SpatialConvolutionMM_updateOutput'
...sm/torch/install/share/lua/5.1/nn/SpatialConvolution.lua:111: in function <...sm/torch/install/share/lua/5.1/nn/SpatialConvolution.lua:107>
[C]: in function 'xpcall'
.../torch/install/share/lua/5.1/nn/Container.lua:63: in function 'rethrowErrors'
.../torch/install/share/lua/5.1/nn/Sequential.lua:44: in function 'forward'
...sm/torch/install/share/lua/5.1/nn/StochasticGradient.lua:35: in function 'train'
[string "trainer:train(trainset)..."]:1: in main chunk
[C]: in function 'xpcall'
.../torch/install/share/lua/5.1/itorch/main.lua:209: in function <.../torch/install/share/lua/5.1/itorch/main.lua:173>
.../torch/install/share/lua/5.1/lzmq/poller.lua:75: in function 'poll'
...rs/.../install/share/lua/5.1/lzmq/impl/loop.lua:307: in function 'poll'
...rs/.../install/share/lua/5.1/lzmq/impl/loop.lua:325: in function 'sleep_ex'
...rs/.../install/share/lua/5.1/lzmq/impl/loop.lua:370: in function 'start'
/Users/.../install/share/lua/5.1/itorch/main.lua:381: in main chunk
[C]: in function 'require'
(command line):1: in main chunk
[C]: at 0x0109becd10
WARNING: If you see a stack trace below, it doesn't point to the place where this error occured. Please use only the one above.
stack traceback:
[C]: in function 'error'
.../torch/install/share/lua/5.1/nn/Container.lua:67: in function 'rethrowErrors'
v/torch/install/share/lua/5.1/nn/Sequential.lua:44: in function 'forward'
...sm/torch/install/share/lua/5.1/nn/StochasticGradient.lua:35: in function 'train'
[string "trainer:train(trainset)..."]:1: in main chunk
[C]: in function 'xpcall'
.../torch/install/share/lua/5.1/itorch/main.lua:209: in function </Users/.../install/share/lua/5.1/itorch/main.lua:173>
.../torch/install/share/lua/5.1/lzmq/poller.lua:75: in function 'poll'
...rs/.../install/share/lua/5.1/lzmq/impl/loop.lua:307: in function 'poll'
...rs/.../install/share/lua/5.1/lzmq/impl/loop.lua:325: in function 'sleep_ex'
...rs/.../install/share/lua/5.1/lzmq/impl/loop.lua:370: in function 'start'
.../torch/install/share/lua/5.1/itorch/main.lua:381: in main chunk
[C]: in function 'require'
(command line):1: in main chunk
[C]: at 0x0109becd10
我不太明白什么是错的,但我仍然不确定火炬数据结构。
感谢您的帮助。
答案 0 :(得分:2)
如错误消息所述,预计会3D or 4D (batch mode) tensor
。这里mnist提供的数据是28x28(= 2D张量)。
您可以通过更改以下内容添加额外的尺寸:
t.data[i]
使用:
t.data[i]:view(1, 28, 28)