我已经构建了一个遗传算法,但我觉得我的代码的选择/变异部分出了问题。这是我正在谈论的代码的一部分:
#include "stdafx.h"
#include <iostream>
#include <vector>
#include <random>
#include <string>
#include <iomanip>
#include <math.h>
// The random number generator I am using.
std::random_device rd;
std::mt19937 rng(rd());
for (int k = 1; k < population_size; k++) // Loop until new population is filled up. K = 1 because first individual has the best genes from last generation.
{
// Calculate total fitness.
double totalfitness = 0;
for (int i = 0; i < population_size; i++)
{
totalfitness += individuals[i].fitness;
}
// Calculate relative fitness.
for (int i = 0; i < population_size; i++)
{
individuals[i].probability = individuals[i].fitness / totalfitness;
}
std::uniform_real_distribution<double> dist2(0.0, 1.0); // Initiate random number generator to generate a double between 0 and 1.
double rndNumber = dist2(rng); // Generate first double
double rndNumber2 = dist2(rng); // Generate second double
double offset = 0.0; // Set offset (starting point from which it'll add up probabilities) at 0.
int father = 0; // father is the individual that is picked, initialize at 0.
int mother = 0;
// Pick first parent. Once picked, set the fitness for that individual at 0 so that it can not be picked again.
for (int i = 0; i < population_size; i++)
{
offset += individuals[i].probability;
if (rndNumber < offset)
{
father = i;
individuals[i].fitness = 0.0;
break;
}
}
offset = 0.0; // Reset offset to zero because we'll start again for the second parent.
totalfitness = 0; // Recalculate total fitness using only the remaining individuals and reset total fitness to 0
// Here we recalculate total fitness using only the fitness of the individuals remaining.
for (int i = 0; i < population_size; i++)
{
totalfitness += individuals[i].fitness;
}
// Then we recalculate probability for the individuals based on the new totalfitness.
for (int i = 0; i < population_size; i++)
{
individuals[i].probability = individuals[i].fitness / totalfitness;
}
// Then we give back the old fitness to the father/mother
individuals[father].fitness = 1 / (individuals[father].evaluation*individuals[father].evaluation);
// Then pick parent 2.
for (int i = 0; i < population_size; i++)
{
offset += individuals[i].probability;
if (rndNumber2 < offset)
{
mother = i;
break;
}
}
// Having picked father and mother, now the idea is to run a random number generator between 0 and 1 for each gene.
// So if: father {5, 8, 9, 3}
// mother {1, 5, 2, 6)
// rndnum {0, 0, 1, 1}
// then child {5, 8, 2, 6}
std::uniform_int_distribution<int> gene_selection(0, 1); // Initiate random number generator to generate an integer between 0 and 1.
for (int i = 0; i < number_of_variables; i++)
{
int gene1 = gene_selection(rng);
if (gene1 == 0)
{
new_individuals[k].chromosomes[0].push_back(individuals[father].chromosomes[0].at(i));
}
else if (gene1 == 1)
{
new_individuals[k].chromosomes[0].push_back(individuals[mother].chromosomes[0].at(i));
}
}
for (int j = 0; j < number_of_variables; j++)
{
for (int l = 0; l < 32; l++)
{
std::uniform_int_distribution<int> mutation(0, 50);
int mutation_outcome = mutation(rng);
if (mutation_outcome == 1)
{
new_individuals[k].chromosomes[0].at(j) ^= (1 << l);
if (new_individuals[k].chromosomes[0].at(j) == 0)
{
int new_var = uni(rng);
new_individuals[k].chromosomes[0].at(j) = new_var;
}
}
}
}
}
// When all new individuals have values, give individuals values of new_individuals and start next round of evaluation.
for (int i = 0; i < population_size; i++)
{
individuals[i] = new_individuals[i];
}
我的代码似乎工作正常。我似乎无法弄清楚它为何会逐渐恶化。它的前几代似乎经常找到新的,更好的解决方案。经过几代人的努力,它停止寻找新的最佳解决方案。
这当然可能是因为没有更好的解决方案,但我也同时在excel中进行计算,并且个人通常可以通过增加其中一条&#34;染色体来获得更好的适应性。 #34; 1,通常是1位变化,因为我通常用10000个人运行这个代码,你说这个程序必然会创建一个有这种变异的个体。
我现在已经使用调试器多次执行我的代码,在每一步显示值等等,但我似乎无法找出它出错的地方所以我想我会在这里发布我的代码,看看是否有人可以发现我搞砸了。
仅为记录,该算法只是一个公式求解器。所以我可以输入a = 1,b = 6,target = 50,a * gene1 + b * gene2,它(理论上)指定一个人越接近获得这个结果的适应度越高。< / p>
另外,如果我不得不猜测我搞砸了,我会在代码的变异部分说出来:
for (int j = 0; j < number_of_variables; j++)
{
for (int l = 0; l < 32; l++)
{
std::uniform_int_distribution<int> mutation(0, 50);
int mutation_outcome = mutation(rng);
if (mutation_outcome == 1)
{
new_individuals[k].chromosomes[0].at(j) ^= (1 << l);
if (new_individuals[k].chromosomes[0].at(j) == 0)
{
int new_var = uni(rng);
new_individuals[k].chromosomes[0].at(j) = new_var;
}
}
}
}
我这么说是因为这是我最不了解的部分,我可以想象我做了一个&#34;隐形&#34;错误。
无论如何,任何帮助都会非常感激。
答案 0 :(得分:0)
嗯,这只是让您的代码更好,更高效的一种方法。您正在使用std::uniform_int_distribution
而没有播种,并且连续近5次呼叫,这可能是y our random number is not really random after all
的原因。
一种简单的方法to get things better
,seeding the random engine with time
,从长远来看,可以授予更好的随机数创建(10000个人,不知何故大!)。
这里有link更好的解释,以及一个简单的代码片段如下:
#include <iostream>
#include <random>
std::default_random_engine generator((unsigned int)time(0));
int random(int n) {
std::uniform_int_distribution<int> distribution(0, n);
return distribution(generator);
}
int main() {
for(int i = 0; i < 15; ++i)
std::cout << random(5) << " " << random(5)<< std::endl;
return 0;
}
希望这会有所帮助!欢呼声,