我关注df
Blades & Razors & Foam Diaper Empty Fem Care HairCare Irrelevant Laundry Oral Care Others Personal Cleaning Care Skin Care
retailer
RTM 158 486 193 2755 3490 1458 889 2921 69 1543 645
RTM 39 0 28 2305 80 27 0 0 0 1207 414
RTM 98 276 121 1090 2359 717 561 911 293 1286 528
RTM 107 484 54 2136 2777 151 80 2191 7 1096 673
RTM 156 465 254 2972 2802 763 867 1065 8 2777 728
RTM 126 326 142 2126 2035 581 575 753 45 1768 292
RTM 0 0 181 1816 1455 598 579 0 2 749 451
RTM 86 374 308 2197 2075 576 698 693 26 1398 212
RTM 132 61 153 2094 1508 180 590 785 66 1519 486
RTM 90 303 8 0 0 18 0 60 0 358 0
RTM 0 14 6 190 198 21 131 75 18 171 0
我希望在我的groupby()
上设置index
,然后在每个column
上获得该组的平均值?知道怎么做到这一点吗?
答案 0 :(得分:0)
要对索引进行分组,请使用:
df.groupby(level=0).mean()
或
df.groupby(df.index).mean()
样品:
df = pd.DataFrame(data=np.random.random((10, 5)), columns=list('CDEFG'), index=list('AB')*5)
df.head()
C D E F G
A 0.230504 0.830818 0.560533 0.266903 0.745196
B 0.996806 0.861006 0.257780 0.258976 0.738617
A 0.409191 0.688814 0.214247 0.309678 0.565571
B 0.805192 0.940919 0.707562 0.772370 0.122562
A 0.596964 0.935662 0.493612 0.108362 0.673538
以上任一产量:
C D E F G
A 0.328301 0.560188 0.632549 0.491101 0.343343
B 0.405996 0.490331 0.540921 0.394136 0.466504
C D E F G
A 0.328301 0.560188 0.632549 0.491101 0.343343
B 0.405996 0.490331 0.540921 0.394136 0.466504