我在寻找例子 Vectorized look-up of values in Pandas dataframe
但不知怎的,我的问题有点不同,我找不到正确的方法,这是一个简单的vlookup
所以我有一个DataFrame
PoliceStations_raw=pd.DataFrame(
[['BAYVIEW' ,37.729732,-122.397981],
['CENTRAL' ,37.798732,-122.409919],
['INGLESIDE' ,37.724676,-122.446215],
['MISSION' ,37.762849,-122.422005],
['NORTHERN' ,37.780186,-122.432467],
['PARK' ,37.767797,-122.455287],
['RICHMOND' ,37.779928,-122.464467],
['SOUTHERN' ,37.772380,-122.389412],
['TARAVAL' ,37.743733,-122.481500],
['TENDERLOIN',37.783674,-122.412899]],columns=['PdDistrict','XX','YY'])
我也定义了
PoliceStations=PoliceStations_raw.transpose()
然后我有另一个表df,其中有一个'PdDistrict'列,其中包含一个分类变量,可以采用'BAYVIEW','CENTRAL'等值...
我想要一个专栏 df ['XX']会为PoliceStations_raw中的相应条目返回每行df ...
我无法找到正确的语法...感谢您的帮助
如果可能的话,我更喜欢涉及PoliceStations_raw的语法(而不是转置表),因为我觉得这个表格更“自然”......
我尝试了这个,但它不起作用
df_raw['value'] = PoliceStations.lookup('XX',df_raw['PdDistrict'])
----------------------------------------------- ---------------------------- ValueError Traceback(最近一次调用 最后)in() ----> 1 df_raw ['value'] = PoliceStations.lookup('XX',df_raw ['PdDistrict'])
/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/pandas/core/frame.pyc 在查找中(self,row_labels,col_labels)2641 n = len(row_labels)2642 if n!= len(col_labels): - > 2643引发ValueError('行标签必须与列标签大小相同')2644 2645 thresh = 1000
ValueError:行标签必须与列标签大小相同
虽然我认为我没有犯标签错误
df_raw['PdDistrict'].cat.categories
索引([u'BAYVIEW',u'CENTRAL',u'INGLESIDE',u'MISSION',u'NORTHERN', u'PARK”, u'RICHMOND',u'SOUTHERN',u'TARAVAL',u'TENDERLOIN'], DTYPE = '对象')
编辑:
我也在尝试以下方法:
PoliceStations_raw=pd.DataFrame(
[['BAYVIEW' ,37.729732,-122.397981],
['CENTRAL' ,37.798732,-122.409919],
['INGLESIDE' ,37.724676,-122.446215],
['MISSION' ,37.762849,-122.422005],
['NORTHERN' ,37.780186,-122.432467],
['PARK' ,37.767797,-122.455287],
['RICHMOND' ,37.779928,-122.464467],
['SOUTHERN' ,37.772380,-122.389412],
['TARAVAL' ,37.743733,-122.481500],
['TENDERLOIN',37.783674,-122.412899]],columns=['PdDistrict','XX','YY'])
df1=pd.DataFrame([[0,'CENTRAL'],[1,'TARAVAL'],[3,'CENTRAL'],[2,'BAYVIEW']])
df1.columns = ['Index','PdDistrict']
Index PdDistrict
0 0 CENTRAL
1 1 TARAVAL
2 3 CENTRAL
3 2 BAYVIEW
尽管输入了sort = False,但返回的对象已经合并了表,但是使用PdDistrict作为一些索引,并且更改了原始左数据帧的行的顺序。
请帮忙!pd.merge(df1,PoliceStations_raw,sort=False)
正在给我这个
Index PdDistrict XX YY
0 0 CENTRAL 37.798732 -122.409919
1 3 CENTRAL 37.798732 -122.409919
2 1 TARAVAL 37.743733 -122.481500
3 2 BAYVIEW 37.729732 -122.397981