我有一个SQLite3数据库。我需要解析10000个文件。我从每个文件中读取一些数据,然后使用此数据查询数据库以获得结果。我的代码在单个进程环境中工作正常。但是在尝试使用多处理池时出现错误。
My approach without multiprocessing (works OK):
1. Open DB connection object
2. for f in files:
foo(f, x1=x1, x2=x2, ..., db=DB)
3. Close DB
My approach with multiprocessing (does NOT work):
1. Open DB
2. pool = multiprocessing.Pool(processes=4)
3. pool.map(functools.partial(foo, x1=x1, x2=x2, ..., db=DB), [files])
4. pool.close()
5. Close DB
我收到以下错误: sqlite3.ProgrammingError:未调用Base Cursor .__ init__。
我的DB类实现如下:
def open_db(sqlite_file):
"""Open SQLite database connection.
Args:
sqlite_file -- File path
Return:
Connection
"""
log.info('Open SQLite database %s', sqlite_file)
try:
conn = sqlite3.connect(sqlite_file)
except sqlite3.Error, e:
log.error('Unable to open SQLite database %s', e.args[0])
sys.exit(1)
return conn
def close_db(conn, sqlite_file):
"""Close SQLite database connection.
Args:
conn -- Connection
"""
if conn:
log.info('Close SQLite database %s', sqlite_file)
conn.close()
class MapDB:
def __init__(self, sqlite_file):
"""Initialize.
Args:
sqlite_file -- File path
"""
# 1. Open database.
# 2. Setup to receive data as dict().
# 3. Get cursor to execute queries.
self._sqlite_file = sqlite_file
self._conn = open_db(sqlite_file)
self._conn.row_factory = sqlite3.Row
self._cursor = self._conn.cursor()
def close(self):
"""Close DB connection."""
if self._cursor:
self._cursor.close()
close_db(self._conn, self._sqlite_file)
def check(self):
...
def get_driver_net(self, net):
...
def get_cell_id(self, net):
...
函数foo()如下所示:
def foo(f, x1, x2, db):
extract some data from file f
r1 = db.get_driver_net(...)
r2 = db.get_cell_id(...)
整体不起作用的实现如下:
mapdb = MapDB(sqlite_file)
log.info('Create NetInfo objects')
pool = multiprocessing.Pool(processes=4)
files = [get list of files to process]
pool.map(functools.partial(foo, x1=x1, x2=x2, db=mapdb), files)
pool.close()
mapdb.close()
要解决这个问题,我想我需要在每个池工作者中创建MapDB()对象(因此有4个并行/独立的连接)。但我不知道该怎么做。有人能告诉我一个如何用Pool完成这个的例子吗?
答案 0 :(得分:4)
如此定义foo
怎么样:
def foo(f, x1, x2, db_path):
mapdb = MapDB(db_path)
... open mapdb
... process data ...
... close mapdb
然后将pool.map调用更改为:
pool.map(functools.partial(foo, x1=x1, x2=x2, db_path="path-to-sqlite3-db"), files)
<强>更新强>
另一个选择是自己处理工作线程并通过Queue
分发工作。
from Queue import Queue
from threading import Thread
q = Queue()
def worker():
mapdb = ...open the sqlite database
while True:
item = q.get()
if item[0] == "file":
file = item[1]
... process file ...
q.task_done()
else:
q.task_done()
break
...close sqlite connection...
# Start up the workers
nworkers = 4
for i in range(nworkers):
worker = Thread(target=worker)
worker.daemon = True
worker.start()
# Place work on the Queue
for x in ...list of files...:
q.put(("file",x))
# Place termination tokens onto the Queue
for i in range(nworkers):
q.put(("end",))
# Wait for all work to be done.
q.join()
终止令牌用于确保关闭sqlite连接 - 如果重要的话。