我试图了解如何使用data.tables。它进展不顺利。
我有一大堆data.table,带有一堆返回和AUM。我将data.table子集化为两个data.tables,一个带有返回,一个带有AUM。我现在想要对return data.table进行子集化,以便仅获得AUM小于50%的资金的回报。
为了给你一个想法,这是我的代码:
fundDetails <- data.table(read.table("Fund_Deets.csv", sep = ",", fill = TRUE, quote="\"", header=TRUE))
fundNAV <- data.table(read.table("NAV_AUM.csv", sep = ",", fill = TRUE, quote="\"", header=TRUE))
allFundDetails <- fundDetails[Currency == 'USD']
allFundNAV <- fundNAV[Fund.ID %in% allFundDetails$Fund.ID]
allFundAUM <- allFundNAV[Type == 'AUM', -c(1,3), with = FALSE]
allFundAUM <- setnames(data.table(t(sapply(allFundAUM[,-1, with = FALSE],as.numeric))), as.character(allFundAUM$Fund.ID))
allFundReturns <- allFundNAV[Type == 'Return', -c(1,3), with = FALSE]
allFundReturns <- setnames(data.table(t(sapply(allFundReturns[,-1, with = FALSE],as.numeric)/100)), as.character(allFundReturns$Fund.ID))
smallFundReturns <- data.table(sapply(allFundReturns, function(x) rep(NA, length(x))))
这产生了以下三个表(smallFundReturns显然只是NA的):
> allFundAUM[,1:10, with = FALSE]
33992 33261 38102 33264 33275 5606 41695 40483 41526 45993
1: NA NA NA NA NA NA NA NA 1 27
2: NA NA NA NA NA NA 117 NA 1 27
3: NA NA NA NA NA NA 120 NA 1 27
4: NA NA NA NA NA NA 133 NA 1 27
5: NA NA NA NA NA NA 146 NA 1 29
---
260: NA NA NA NA NA NA NA NA NA NA
261: NA NA NA NA NA NA NA NA NA NA
262: NA NA NA NA NA NA NA NA NA NA
263: NA NA NA NA NA NA NA NA NA NA
264: NA NA NA NA NA NA NA NA NA NA
> allFundReturns[,1:10, with = FALSE]
33992 33261 38102 33264 33275 5606 41695 40483 41526 45993
1: NA NA NA NA NA NA NA NA 0.0188 -0.0116
2: NA NA NA NA NA NA -0.0315 NA -0.0120 0.0134
3: NA NA NA NA NA NA -0.0978 NA -0.0908 -0.0206
4: NA NA NA NA NA NA -0.0445 NA -0.0269 -0.0287
5: NA NA NA NA NA NA 0.0139 NA 0.0298 -0.0141
---
260: NA NA NA NA NA NA NA NA NA NA
261: NA NA NA NA NA NA NA NA NA NA
262: NA NA NA NA NA NA NA NA NA NA
263: NA NA NA NA NA NA NA NA NA NA
264: NA NA NA NA NA NA NA NA NA NA
> smallFundReturns[,1:10, with = FALSE]
33992 33261 38102 33264 33275 5606 41695 40483 41526 45993
1: NA NA NA NA NA NA NA NA NA NA
2: NA NA NA NA NA NA NA NA NA NA
3: NA NA NA NA NA NA NA NA NA NA
4: NA NA NA NA NA NA NA NA NA NA
5: NA NA NA NA NA NA NA NA NA NA
---
260: NA NA NA NA NA NA NA NA NA NA
261: NA NA NA NA NA NA NA NA NA NA
262: NA NA NA NA NA NA NA NA NA NA
263: NA NA NA NA NA NA NA NA NA NA
264: NA NA NA NA NA NA NA NA NA NA
for (i in 1:nrow(allFundReturns)){
theSubset <- as.vector(allFundReturns[i,] <= as.numeric(quantile(allFundAUM[i,], .5, na.rm = TRUE)))
theSubset[is.na(theSubset)] <- FALSE
theSubset <- colnames(allFundReturns)[theSubset]
smallFundReturns[i,theSubset, with = FALSE] = allFundReturns[i,theSubset, with = FALSE]
}
我正在尝试使用for for循环进行子集化(使用for循环尝试调试):
for (i in 1:nrow(allFundReturns)){
theSubset <- as.vector(allFundReturns[i,] <= as.numeric(quantile(allFundAUM[i,], .5, na.rm = TRUE)))
theSubset[is.na(theSubset)] <- FALSE
theSubset <- colnames(allFundReturns)[theSubset]
smallFundReturns[i,theSubset, with = FALSE] = allFundReturns[i,theSubset, with = FALSE]
}
这会产生错误:
Error in `[<-.data.table`(`*tmp*`, i, theSubset, with = FALSE, value = list( :
unused argument (with = FALSE)
我尝试删除'with'部分,但这会发出一堆警告:
> warnings()
Warning messages:
1: In `[<-.data.table`(`*tmp*`, i, theSubset, value = c("41526", ... :
Supplied 3020 items to be assigned to 1 items of column '41526' (3019 unused)
2: In `[<-.data.table`(`*tmp*`, i, theSubset, value = c("41526", ... :
Supplied 3020 items to be assigned to 1 items of column '45993' (3019 unused)
3: In `[<-.data.table`(`*tmp*`, i, theSubset, value = c("41526", ... :
Supplied 3020 items to be assigned to 1 items of column '45994' (3019 unused)
4: In `[<-.data.table`(`*tmp*`, i, theSubset, value = c("41526", ... :
我对如何做到这一点很困惑。关于我如何通过第一个数据子集对第二个data.table进行子集的任何想法?
编辑:
我尝试了以下建议:
smallFundReturns[i,(theSubset):=allFundReturns[i,(theSubset), with = FALSE], with = FALSE]
我收到了这些警告():
> warnings()
Warning messages:
1: In `[.data.table`(smallFundReturns, i, `:=`((theSubset), ... :
Coerced 'double' RHS to 'logical' to match the column's type; may have truncated precision. Either change the target column to 'double' first (by creating a new 'double' vector length 264 (nrows of entire table) and assign that; i.e. 'replace' column), or coerce RHS to 'logical' (e.g. 1L, NA_[real|integer]_, as.*, etc) to make your intent clear and for speed. Or, set the column type correctly up front when you create the table and stick to it, please.
2: In `[.data.table`(smallFundReturns, i, `:=`((theSubset), ... :
Coerced 'double' RHS to 'logical' to match the column's type; may have truncated precision. Either change the target column to 'double' first (by creating a new 'double' vector length 264 (nrows of entire table) and assign that; i.e. 'replace' column), or coerce RHS to 'logical' (e.g. 1L, NA_[real|integer]_, as.*, etc) to make your intent clear and for speed. Or, set the column type correctly up front when you create the table and stick to it, please.
3: In `[.data.table`(smallFundReturns, i, `:=`((theSubset), ... :
代码产生了这个,在任何地方我都期待一个数字为“TRUE”:
> smallFundReturns[,1:10, with = FALSE]
33992 33261 38102 33264 33275 5606 41695 40483 41526 45993
1: NA NA NA NA NA NA NA NA TRUE TRUE
2: NA NA NA NA NA NA NA NA NA NA
3: NA NA NA NA NA NA NA NA NA NA
4: NA NA NA NA NA NA NA NA NA NA
5: NA NA NA NA NA NA NA NA NA NA
---
260: NA NA NA NA NA NA NA NA NA NA
261: NA NA NA NA NA NA NA NA NA NA
262: NA NA NA NA NA NA NA NA NA NA
263: NA NA NA NA NA NA NA NA NA NA
264: NA NA NA NA NA NA NA NA NA NA
编辑2:
我想出了这个问题。显然,这一行:
smallFundReturns <- data.table(sapply(allFundReturns, function(x) rep(NA, length(x))))
将表创建为逻辑。我把它改成了这一行:
smallFundReturns <- data.table(sapply(allFundReturns, function(x) as.numeric(rep(NA, length(x)))))
在@HubertL修复之后一切正常。谢谢!!
答案 0 :(得分:1)
你必须这样写:
smallFundReturns[i,(theSubset):=allFundReturns[i,(theSubset), with = FALSE], with = FALSE]
答案 1 :(得分:1)
改进建议:
尝试使用fread而不是read.table读取数据。它的速度更快,结果是data.table而不是data.frame。
进行&#34; data.table操作&#34;声明&#34;,= = FALSE&#34;你实际上强迫R使用更慢的data.frame操作,而不是使用超快的data.table方法。
玩得开心