我有一个属于某个类的大项目。
struct item {
int class_id;
//some other data...
};
同一个class_id可以在向量中多次出现,向量构造一次,然后按class_id排序。因此,同一类中的所有元素在向量中彼此相邻。
我后来必须处理每个类的项目,即。我更新同一类的所有项目,但我不修改不同类的任何项目。由于我必须为所有项目执行此操作,并且代码可以简单地并行化,因此我希望将Microsoft PPL与Concurrency :: parallel_for_each()一起使用。因此,我需要一个迭代器,并提出了一个前向迭代器,它返回所有项目的范围,并以某个class_id作为代理对象。代理只是一个std :: pair,代理是迭代器的值类型。
using item_iterator = std::vector<item>::iterator;
using class_range = std::pair<item_iterator, item_iterator>;
//iterator definition
class per_class_iterator : public std::iterator<std::forward_iterator_tag, class_range> { /* ... */ };
到现在为止,我能够循环遍历所有类并更新这样的项目。
std::vector<item> items;
//per_class_* returns a per_class_iterator
std::for_each(items.per_class_begin(), items.per_class_end(),
[](class_range r)
{
//do something for all items in r
std::for_each(r.first, r.second, /* some work */);
});
当用Concurrency :: parallel_for_each替换std :: for_each时,代码崩溃了。调试后,我发现问题是ppl.h中第2772行的_Parallel_for_each_helper中的以下代码。
// Add a batch of work items to this functor's array
for (unsigned int _Index=0; (_Index < _Size) && (_First != _Last); _Index++)
{
_M_element[_M_len++] = &(*_First++);
}
它使用postincrement(因此返回一个临时迭代器),取消引用临时迭代器并获取解除引用项的地址。这仅在取消引用临时对象返回的项目存活时才有效,即。基本上如果它直接指向容器。所以修复这个很容易,虽然每个类的std :: for_each工作循环必须用for循环替换。
//it := iterator somewhere into the vector of items (item_iterator)
for(const auto cur_class = it->class_id; cur_class == it->class_id; ++it)
{
/* some work */
}
我的问题是,如果以我所做的方式返回代理对象是违反标准,或者假设每个迭代器都取消引用永久数据的假设是由Microsoft为其库创建的,但是没有记录。至少我找不到关于parallel_for_each()的迭代器要求的任何文档,除了期望随机访问或前向迭代器。我见过the question about forward iterators and vector但是因为我的迭代器的引用类型是const value_type&amp;我仍然认为我的迭代器是标准的。那么返回代理对象的前向迭代器仍然是一个有效的前向迭代器吗?或者换句话说,迭代器的值类型是否与实际存储在容器中的类型不同?
#include <vector>
#include <utility>
#include <cassert>
#include <iterator>
#include <memory>
#include <algorithm>
#include <iostream>
#include <ppl.h>
using identifier = int;
struct item
{
identifier class_id;
// other data members
// ...
bool operator<(const item &rhs) const
{
return class_id < rhs.class_id;
}
bool operator==(const item &rhs) const
{
return class_id == rhs.class_id;
}
//inverse operators omitted
};
using container = std::vector<item>;
using item_iterator = typename container::iterator;
using class_range = std::pair<item_iterator, item_iterator>;
class per_class_iterator : public std::iterator<std::forward_iterator_tag, class_range>
{
public:
per_class_iterator() = default;
per_class_iterator(const per_class_iterator&) = default;
per_class_iterator& operator=(const per_class_iterator&) = default;
explicit per_class_iterator(container &data) :
data_(std::addressof(data)),
class_(equal_range(data_->front())), //this would crash for an empty container. assume it's not.
next_(class_.second)
{
assert(!data_->empty()); //a little late here
assert(std::is_sorted(std::cbegin(*data_), std::cend(*data_)));
}
reference operator*()
{
//if data_ is unset the iterator is an end iterator. dereferencing end iterators is bad.
assert(data_ != nullptr);
return class_;
}
per_class_iterator& operator++()
{
assert(data_ != nullptr);
//if we are at the end of our data
if(next_ == data_->end())
{
//reset the data pointer, ie. make iterator an end iterator
data_ = nullptr;
}
else
{
//set to the class of the next element
class_ = equal_range(*next_);
//and update the next_ iterator
next_ = class_.second;
}
return *this;
}
per_class_iterator operator++(int)
{
per_class_iterator tmp{*this};
++(*this);
return tmp;
}
bool operator!=(const per_class_iterator &rhs) const noexcept
{
return (data_ != rhs.data_) ||
(data_ != nullptr && rhs.data_ != nullptr && next_ != rhs.next_);
}
bool operator==(const per_class_iterator &rhs) const noexcept
{
return !(*this != rhs);
}
private:
class_range equal_range(const item &i) const
{
return std::equal_range(data_->begin(), data_->end(), i);
}
container* data_ = nullptr;
class_range class_;
item_iterator next_;
};
per_class_iterator per_class_begin(container &c)
{
return per_class_iterator{c};
}
per_class_iterator per_class_end()
{
return per_class_iterator{};
}
int main()
{
std::vector<item> items;
items.push_back({1});
items.push_back({1});
items.push_back({3});
items.push_back({3});
items.push_back({3});
items.push_back({5});
//items are already sorted
//#define USE_PPL
#ifdef USE_PPL
Concurrency::parallel_for_each(per_class_begin(items), per_class_end(),
#else
std::for_each(per_class_begin(items), per_class_end(),
#endif
[](class_range r)
{
//this loop *cannot* be parallelized trivially
std::for_each(r.first, r.second,
[](item &i)
{
//update item (by evaluating all other items of the same class) ...
//building big temporary data structure for all items of same class ...
//i.processed = true;
std::cout << "item: " << i.class_id << '\n';
});
});
return 0;
}
答案 0 :(得分:3)
当您编写代理迭代器时,reference
类型应该是类类型,正是因为它可以比它派生的迭代器更长。因此,对于代理迭代器,在实例化std::iterator
基础时,应将Reference
模板参数指定为类类型,通常与值类型相同:
class per_class_iterator : public std::iterator<
std::forward_iterator_tag, class_range, std::ptrdiff_t, class_range*, class_range>
~~~~~~~~~~~
不幸的是,PPL并不热衷于代理迭代器,并且会破坏编译:
ppl.h(2775): error C2338: lvalue required for forward iterator operator *
ppl.h(2772): note: while compiling class template member function 'Concurrency::_Parallel_for_each_helper<_Forward_iterator,_Function,1024>::_Parallel_for_each_helper(_Forward_iterator &,const _Forward_iterator &,const _Function &)'
with
[
_Forward_iterator=per_class_iterator,
_Function=main::<lambda_051d98a8248e9970abb917607d5bafc6>
]
这实际上是static_assert
:
static_assert(std::is_lvalue_reference<decltype(*_First)>::value, "lvalue required for forward iterator operator *");
这是因为封闭的class _Parallel_for_each_helper
存储了一个pointer
的数组,并希望以后可以间接它们:
typename std::iterator_traits<_Forward_iterator>::pointer _M_element[_Size];
由于PPL没有检查pointer
实际上是否是指针,我们可以通过提供带有operator*
的代理指针并重载class_range::operator&
来利用它:
struct class_range_ptr;
struct class_range : std::pair<item_iterator, item_iterator> {
using std::pair<item_iterator, item_iterator>::pair;
class_range_ptr operator&();
};
struct class_range_ptr {
class_range range;
class_range& operator*() { return range; }
class_range const& operator*() const { return range; }
};
inline class_range_ptr class_range::operator&() { return{*this}; }
class per_class_iterator : public std::iterator<
std::forward_iterator_tag, class_range, std::ptrdiff_t, class_range_ptr, class_range&>
{
// ...
这很有效:
item: item: 5
1
item: 3item: 1
item: 3
item: 3
Press any key to continue . . .
答案 1 :(得分:0)
对于你的直接问题,不,迭代器不必是与任何类型的容器相关的东西。 About only requirements for an iterator适用于:
迭代器不一定必须绑定到特定的容器(参见generators),因此不能说&#34;它必须与容器具有相同的类型&#34; - 因为通用情况下没有容器。
看起来,有一个自定义迭代器类可能实际上是一个矫枉过正的情况。这就是原因:
在C ++中,数组/向量结束迭代器是指向最后一项末尾的迭代器。
给出&#34;类&#34;的对象向量; (在您的定义中)A,B,C等,填写如下:
AAAAAAABBBBBBBBBBBBCCCCCCCD.......
你可以采用常规的矢量迭代器来充当你的范围的开始和结束:
AAAAAAABBBBBBBBBBBBCCCCCCCD......Z
^ ^ ^ ^ ^
i1 i2 i3 i4 iN
对于您在此处看到的4个迭代器,以下是真实的:
begin
迭代器end
迭代器和B类的begin
迭代器end
迭代器和C类的begin
迭代器等。因此,对于每个类,您可以拥有一对迭代器,它们是相应类范围的开始和结束。
因此,您的处理过程非常简单:
for(auto it = i1; i!= i2; i++) processA(*it);
for(auto it = i2; i!= i3; i++) processB(*it);
for(auto it = i3; i!= i4; i++) processC(*it);
每个循环都可以平行化。
parallel_for_each (i1; i2; processA);
parallel_for_each (i2; i3; processB);
parallel_for_each (i3; i4; processC);
要使用基于范围的for
,您可以引入替代范围类:
class vector_range<T> {
public:
vector<T>::const_iterator begin() {return _begin;};
vector<T>::const_iterator end() {return _end;};
// Trivial constructor filling _begin and _end fields
}
也就是说,您并不需要代理迭代器来并行化循环 - 完成C ++迭代器的方式已经完全覆盖了您的情况。