我正在尝试在Python 2.7中为下面的Pandas数据框中的E列中的每个分类值生成一个方框图
A B C D E
0 0.647366 0.317832 0.875353 0.993592 1
1 0.504790 0.041806 0.113889 0.445370 2
2 0.769335 0.120647 0.749565 0.935732 3
3 0.215003 0.497402 0.795033 0.246890 1
4 0.841577 0.211128 0.248779 0.250432 1
5 0.045797 0.710889 0.257784 0.207661 4
6 0.229536 0.094308 0.464018 0.402725 3
7 0.067887 0.591637 0.949509 0.858394 2
8 0.827660 0.348025 0.507488 0.343006 3
9 0.559795 0.820231 0.461300 0.921024 1
我愿意使用Matplotlib或任何其他绘图库来做到这一点。到目前为止,上面的代码可以绘制在一个图上组合的所有类别。以下是生成上述数据并生成图表的代码:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
# Data
df = pd.DataFrame(np.random.rand(10,4),columns=list('ABCD'))
df['E'] = [1,2,3,1,1,4,3,2,3,1]
# Boxplot
bp = ax.boxplot(df.iloc[:,:-1].values, widths=0.2)
plt.show()
在此示例中,类别为1,2,3,4。我想在同一个图上并排绘制单独的箱形图,仅用于类别1和2,并在图例中显示类别名称。
有办法做到这一点吗?
其他信息:
输出应与here中的第3个数字相似 - 将“是”,“否”改为“1”,“2”。
答案 0 :(得分:12)
从这开始:
import numpy
import pandas
from matplotlib import pyplot
import seaborn
seaborn.set(style="ticks")
# Data
df = pandas.DataFrame(numpy.random.rand(10,4), columns=list('ABCD'))
df['E'] = [1, 2, 3, 1, 1, 4, 3, 2, 3, 1]
你有几个选择。如果单独的轴可以,
fig, axes = pyplot.subplots(ncols=4, figsize=(12, 5), sharey=True)
df.query("E in [1, 2]").boxplot(by='E', return_type='axes', ax=axes)
如果你想要1个轴,我认为seaborn会更容易。您只需要清理数据。
ax = (
df.set_index('E', append=True) # set E as part of the index
.stack() # pull A - D into rows
.to_frame() # convert to a dataframe
.reset_index() # make the index into reg. columns
.rename(columns={'level_2': 'quantity', 0: 'value'}) # rename columns
.drop('level_0', axis='columns') # drop junk columns
.pipe((seaborn.boxplot, 'data'), x='E', y='value', hue='quantity', order=[1, 2])
)
seaborn.despine(trim=True)
关于seaborn的一个很酷的事情是,稍微调整参数可以在情节的布局方面实现很多。如果我们切换hue
和x
变量,我们会得到:
ax = (
df.set_index('E', append=True) # set E as part of the index
.stack() # pull A - D into rows
.to_frame() # convert to a dataframe
.reset_index() # make the index into reg. columns
.rename(columns={'level_2': 'quantity', 0: 'value'}) # rename columns
.drop('level_0', axis='columns') # drop junk columns
.pipe((seaborn.boxplot, 'data'), x='quantity', y='value', hue='E', hue_order=[1, 2])
)
seaborn.despine(trim=True)
如果您感到好奇,结果数据框看起来像这样:
E quantity value
0 1 A 0.935433
1 1 B 0.862290
2 1 C 0.197243
3 1 D 0.977969
4 2 A 0.675037
5 2 B 0.494440
6 2 C 0.492762
7 2 D 0.531296
8 3 A 0.119273
9 3 B 0.303639
10 3 C 0.911700
11 3 D 0.807861
答案 1 :(得分:1)
@Paul_H答案的补充。
在单个matplotlib.axes.Axes
上并排进行箱线图绘制,没有任何先例:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.DataFrame(np.random.rand(10,4), columns=list('ABCD'))
df['E'] = [1, 2, 1, 1, 1, 2, 1, 2, 2, 1]
mask_e = df['E'] == 1
# prepare data
data_to_plot = [df[mask_e]['A'], df[~mask_e]['A'],
df[mask_e]['B'], df[~mask_e]['B'],
df[mask_e]['C'], df[~mask_e]['C'],
df[mask_e]['D'], df[~mask_e]['D']]
# Positions defaults to range(1, N+1) where N is the number of boxplot to be drawn.
# we will move them a little, to visually group them
plt.figure(figsize=(10, 6))
box = plt.boxplot(data_to_plot,
positions=[1, 1.6, 2.5, 3.1, 4, 4.6, 5.5, 6.1],
labels=['A1','A0','B1','B0','C1','C0','D1','D0'])