1 0 0 0 1
0 0 0 0 0
0 1 0 0 1
1 0 0 0 1
0 0 0 0 0
1 0 0 0 1
我有一个数据框(见上文)。我需要比较它的行来获得匹配的行。所以对于上面的df我应该在比较后获得row1 = row4 = row6和row2 = row5。有没有有效的方法在python中进行这种行比较。
答案 0 :(得分:3)
使用:
import pandas as pd
df = pd.DataFrame({0: {0: 1, 1: 0, 2: 0, 3: 1, 4: 0, 5: 1},
1: {0: 0, 1: 0, 2: 1, 3: 0, 4: 0, 5: 0},
2: {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0},
3: {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0},
4: {0: 1, 1: 0, 2: 1, 3: 1, 4: 0, 5: 1}})
print df
0 1 2 3 4
0 1 0 0 0 1
1 0 0 0 0 0
2 0 1 0 0 1
3 1 0 0 0 1
4 0 0 0 0 0
5 1 0 0 0 1
#first select only all duplicated rows
df1 = df[df.duplicated(keep=False)]
print df1
0 1 2 3 4
0 1 0 0 0 1
1 0 0 0 0 0
3 1 0 0 0 1
4 0 0 0 0 0
5 1 0 0 0 1
#sort values by all columns
df2 = df1.sort_values(by=df.columns.tolist())
print df2
0 1 2 3 4
1 0 0 0 0 0
4 0 0 0 0 0
0 1 0 0 0 1
3 1 0 0 0 1
5 1 0 0 0 1
#find groups
print (~((df2 == df2.shift(1)).all(1))).cumsum()
1 1
4 1
0 2
3 2
5 2
dtype: int32
#print groups
for i, g in df.groupby((~((df2 == df2.shift(1)).all(1))).cumsum()):
print g
0 1 2 3 4
1 0 0 0 0 0
4 0 0 0 0 0
0 1 2 3 4
0 1 0 0 0 1
3 1 0 0 0 1
5 1 0 0 0 1
#dict comprehension for storing groups
dfs = {i-1: g for i,g in df.groupby((~((df2 == df2.shift(1)).all(1))).cumsum())}
print dfs
{0.0: 0 1 2 3 4
1 0 0 0 0 0
4 0 0 0 0 0, 1.0: 0 1 2 3 4
0 1 0 0 0 1
3 1 0 0 0 1
5 1 0 0 0 1}
print dfs[0]
0 1 2 3 4
1 0 0 0 0 0
4 0 0 0 0 0
print dfs[1]
0 1 2 3 4
0 1 0 0 0 1
3 1 0 0 0 1
5 1 0 0 0 1
答案 1 :(得分:1)
以下是我的想法。
import pandas as pd
df = pd.DataFrame({0: {0: 1, 1: 0, 2: 0, 3: 1, 4: 0, 5: 1},
1: {0: 0, 1: 0, 2: 1, 3: 0, 4: 0, 5: 0},
2: {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0},
3: {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0},
4: {0: 1, 1: 0, 2: 1, 3: 1, 4: 0, 5: 1}})
groups = df.groupby(df.columns.tolist())
df.loc[:, 'group_num'] = None
for num, group in enumerate(groups):
df.loc[group[1].index, 'group_num'] = num
...产量
0 1 2 3 4 group_num
0 1 0 0 0 1 2
1 0 0 0 0 0 0
2 0 1 0 0 1 1
3 1 0 0 0 1 2
4 0 0 0 0 0 0
5 1 0 0 0 1 2
为什么在最后一行分组[1]?
因为您正在遍历表单的元组(group_name,group_table)。 group [1]访问实际分组的DataFrame。