如何使用火花数据框评估火花Dstream对象

时间:2016-05-11 22:31:44

标签: apache-spark pyspark spark-streaming

我正在编写一个spark应用程序,我需要根据历史数据来评估流数据,这些数据位于sql server数据库中

现在的想法是,spark将从数据库中获取历史数据并将其保留在内存中,并将根据它评估流数据。

现在我将流数据作为

import re
from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.sql import SQLContext,functions as func,Row


sc = SparkContext("local[2]", "realtimeApp")
ssc = StreamingContext(sc,10)
files = ssc.textFileStream("hdfs://RealTimeInputFolder/")

########Lets get the data from the db which is relavant for streaming ###

driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"
dataurl = "jdbc:sqlserver://myserver:1433"
db = "mydb"
table = "stream_helper"
credential = "my_credentials"

########basic data for evaluation purpose ########



files_count = files.flatMap(lambda file: file.split( ))

pattern =  '(TranAmount=Decimal.{2})(.[0-9]*.[0-9]*)(\\S+ )(TranDescription=u.)([a-zA-z\\s]+)([\\S\\s]+ )(dSc=u.)([A-Z]{2}.[0-9]+)'


tranfiles = "wasb://myserver.blob.core.windows.net/RealTimeInputFolder01/"

def getSqlContextInstance(sparkContext):
    if ('sqlContextSingletonInstance' not in globals()):
        globals()['sqlContextSingletonInstance'] = SQLContext(sparkContext)
    return globals()['sqlContextSingletonInstance']


def pre_parse(logline):
    """
    to read files as rows of sql in pyspark streaming using the pattern . for use of logging 
    added 0,1 in case there is any failure in processing by this pattern

    """
    match = re.search(pattern,logline)
    if match is None:
        return(line,0)
    else:
        return(
        Row(
        customer_id = match.group(8)
        trantype = match.group(5)
        amount = float(match.group(2))
        ),1)


def parse():
    """
    actual processing is happening  here 
    """
    parsed_tran = ssc.textFileStream(tranfiles).map(preparse)
    success = parsed_tran.filter(lambda s: s[1] == 1).map(lambda x:x[0])
    fail = parsed_tran.filter(lambda s:s[1] == 0).map(lambda x:x[0])
    if fail.count() > 0:
        print "no of non parsed file : %d", % fail.count()

    return success,fail

success ,fail = parse()

现在我想通过我从历史数据

获得的数据框来评估它
base_data = sqlContext.read.format("jdbc").options(driver=driver,url=dataurl,database=db,user=credential,password=credential,dbtable=table).load()

现在,由于这是作为数据框返回的,我如何将其用于我的目的。 流媒体节目指南here表示 "您必须使用StreamingContext正在使用的SparkContext创建一个SQLContext。"

现在这让我对如何将现有数据帧与流对象一起使用更加困惑。任何帮助都非常感谢。

1 个答案:

答案 0 :(得分:0)

要操纵DataFrame,您始终需要 SQLContext ,以便您可以将其实例化为:

sc = SparkContext("local[2]", "realtimeApp")
sqlc = SQLContext(sc)
ssc = StreamingContext(sc, 10)

这两个上下文( SQLContext StreamingContext )将共存于同一个作业中,因为它们与相同的 SparkContext 相关联。 但是,请记住,你不能在同一个工作中实现两个不同的SparkContext。

从DStreams创建DataFrame后,您可以将历史DataFrame与从流中创建的DataFrame一起加入。 要做到这一点,我会做类似的事情:

yourDStream.foreachRDD(lambda rdd: sqlContext
    .createDataFrame(rdd)
    .join(historicalDF, ...)
    ...
)

考虑操作流时需要用于连接的流数据量,您可能会对windowed functions

感兴趣