如果我想制作如下所示的组合图像(original source here), 你能指点我需要组装的matplotlib对象吗?我一直在尝试使用AxesImage对象,我也已经下载了SciKits Timeseries - 但我是否需要这个,或者可以从时间模块中轻松使用strptime,mktime和strftime并自行滚动定制轴?谢谢〜
答案 0 :(得分:10)
您不需要任何自定义轴。 Timeseries Scikit很棒,但你根本不需要它来处理matplotlib中的日期......
您可能希望使用matplotlib.dates
,plot_date
中的各种功能来绘制您的值,imshow(和/或pcolor在某些情况下)来绘制您的各种规范,matplotlib.mlab.specgram来计算它们。
对于子图,您需要在创建它们时使用sharex
kwarg,以便它们共享相同的x轴。要在图表之间共享x轴时禁用某些轴上的x轴标签,您需要使用类似matplotlib.pyplot.setp(ax1.get_xticklabels(), visible=False)
的内容。 (这是一个稍微粗糙的黑客,但它是在所有子图之间共享相同的x轴时仅在底部子图上显示x轴标签的唯一方法)要调整子图之间的间距,请参阅subplots_adjust
。
希望所有这些都有道理......我会在今天晚些时候有时候添加一个使用所有内容的快速示例......
修改强> 所以这是一个关于这个想法的粗略例子。您的示例中显示的某些内容(例如多色轴标签)在matplotlib中很难做到。 (并非不可能,但我已经在这里跳过它们了......)
import datetime
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib import mlab
from mpl_toolkits.axes_grid1 import make_axes_locatable
def main():
#-- Make a series of dates
start = datetime.datetime(2010,9,15,8,0)
end = datetime.datetime(2010,9,15,18,0)
delta = datetime.timedelta(seconds=1)
# Note: "time" is now an array of floats, where 1.0 corresponds
# to one day, and 0.0 corresponds to 1900 (I think...)
# It's _not_ an array of datetime objects!
time = mpl.dates.drange(start, end, delta)
num = time.size
#-- Generate some data
x = brownian_noise(num)
y = brownian_noise(num)
z = brownian_noise(num)
plot(x, y, z, time)
plt.show()
def plot(x, y, z, time):
fig = plt.figure()
#-- Panel 1
ax1 = fig.add_subplot(311)
im, cbar = specgram(x, time, ax1, fig)
ax1.set_ylabel('X Freq. (Hz)')
ax1.set_title('Fake Analysis of Something')
#-- Panel 2
ax2 = fig.add_subplot(312, sharex=ax1)
im, cbar = specgram(y, time, ax2, fig)
ax2.set_ylabel('Y Freq. (Hz)')
#-- Panel 3
ax3 = fig.add_subplot(313, sharex=ax1)
# Plot the 3 source datasets
xline = ax3.plot_date(time, x, 'r-')
yline = ax3.plot_date(time, y, 'b-')
zline = ax3.plot_date(time, z, 'g-')
ax3.set_ylabel(r'Units $(\mu \phi)$')
# Make an invisible spacer...
cax = make_legend_axes(ax3)
plt.setp(cax, visible=False)
# Make a legend
ax3.legend((xline, yline, zline), ('X', 'Y', 'Z'), loc='center left',
bbox_to_anchor=(1.0, 0.5), frameon=False)
# Set the labels to be rotated at 20 deg and aligned left to use less space
plt.setp(ax3.get_xticklabels(), rotation=-20, horizontalalignment='left')
# Remove space between subplots
plt.subplots_adjust(hspace=0.0)
def specgram(x, time, ax, fig):
"""Make and plot a log-scaled spectrogram"""
dt = np.diff(time)[0] # In days...
fs = dt * (3600 * 24) # Samples per second
spec_img, freq, _ = mlab.specgram(x, Fs=fs, noverlap=200)
t = np.linspace(time.min(), time.max(), spec_img.shape[1])
# Log scaling for amplitude values
spec_img = np.log10(spec_img)
# Log scaling for frequency values (y-axis)
ax.set_yscale('log')
# Plot amplitudes
im = ax.pcolormesh(t, freq, spec_img)
# Add the colorbar in a seperate axis
cax = make_legend_axes(ax)
cbar = fig.colorbar(im, cax=cax, format=r'$10^{%0.1f}$')
cbar.set_label('Amplitude', rotation=-90)
ax.set_ylim([freq[1], freq.max()])
# Hide x-axis tick labels
plt.setp(ax.get_xticklabels(), visible=False)
return im, cbar
def make_legend_axes(ax):
divider = make_axes_locatable(ax)
legend_ax = divider.append_axes('right', 0.4, pad=0.2)
return legend_ax
def brownian_noise(num):
x = np.random.random(num) - 0.5
x = np.cumsum(x)
return x
if __name__ == '__main__':
main()