知道为什么这么慢?
我正在尝试将矩阵索引到第一行。
> nrow(cfm2)
[1] 8326
> head(cfm2)
TSX TY1 GC1:CAD CL1:CAD
1983-12-01 2558.0 80.43750 497.3676 36.29842
1983-12-02 2550.2 79.84375 496.1024 36.55753
1983-12-05 2540.2 79.81250 496.9146 36.49022
1983-12-06 2536.8 79.84375 495.9524 36.41626
1983-12-07 2549.3 79.68750 501.9910 36.16226
1983-12-08 2535.5 79.25000 484.1805 36.44115
我试过这个,得到了奇怪的结果:
> cfm <- cfm2 / drop(coredata(cfm2[1]))
> head(cfm)
TSX TY1 GC1:CAD CL1:CAD
1983-12-01 1.0000000 0.16172644 0.1944361 0.07298106
1983-12-02 31.7041175 2.19964833 6.1675513 1.00713855
1983-12-05 5.1072883 0.03120113 0.9990891 0.01426514
1983-12-06 69.8873485 0.99261849 13.6631959 0.45272736
1983-12-07 0.9965989 0.16021851 0.1962435 0.07270731
1983-12-08 31.5213675 2.18329086 6.0193380 1.00393224
我尝试了这个,得到了正确的结果,但是花了很长时间。
test.cfm <- function(cfm){
cfm1 <- cfm
for(cc in 1:ncol(cfm)){
for(rr in 1:nrow(cfm)){
coredata(cfm[rr,cc]) <- 100 * coredata(cfm1[rr,cc]) / coredata(cfm1[1,cc])
}
}
return(cfm)
}
> system.time(cfm <- test.cfm(cfm2))
user system elapsed
17.809 4.886 22.896
> head(cfm)
TSX TY1 GC1:CAD CL1:CAD
1983-12-01 100.00000 100.00000 100.00000 100.00000
1983-12-02 99.69507 99.26185 99.74561 100.71385
1983-12-05 99.30414 99.22300 99.90891 100.52841
1983-12-06 99.17123 99.26185 99.71545 100.32465
1983-12-07 99.65989 99.06760 100.92956 99.62491
1983-12-08 99.12041 98.52370 97.34861 100.39322
知道发生了什么事吗?我相信对于那些有经验的人来说这一定是显而易见的,但我很困惑......
答案 0 :(得分:3)
你的循环遍布每一个。单。元件。让R&#39的矢量化帮助你。
test.cfm.new <- function(cfm) {
for(cc in 1:ncol(cfm)) {
cfm[,cc] <- cfm[,cc] / drop(coredata(cfm[1,cc]))
}
return(100 * cfm)
}
require(xts)
data(sample_matrix)
x <- as.xts(sample_matrix)
system.time(cfm <- test.cfm(x))
# user system elapsed
# 0.111 0.000 0.112
system.time(cfm.new <- test.cfm.new(x))
# user system elapsed
# 0.000 0.000 0.001
all.equal(cfm, cfm.new)
# [1] TRUE