我在这里找到了看似有用的内容:
http://eli.thegreenplace.net/2012/01/16/python-parallelizing-cpu-bound-tasks-with-multiprocessing/
我尝试过这段代码,它使用多处理,但它对我不起作用。我对原文进行的唯一更改是变量out_q = queue.Queue而不是out_q = Queue。
我相信这段代码是用python 2.x编写的,我使用的是python 3.4.2
我当然已经输入了所有必需品。
def mp_factorizer(nums, nprocs):
def worker(nums, out_q):
""" The worker function, invoked in a process. 'nums' is a
list of numbers to factor. The results are placed in
a dictionary that's pushed to a queue.
"""
outdict = {}
for n in nums:
outdict[n] = factorize_naive(n)
out_q.put(outdict)
# Each process will get 'chunksize' nums and a queue to put his out
# dict into
out_q = queue.Queue()
chunksize = int(math.ceil(len(nums) / float(nprocs)))
procs = []
for i in range(nprocs):
p = multiprocessing.Process(
target=worker,
args=(nums[chunksize * i:chunksize * (i + 1)],
out_q))
procs.append(p)
p.start()
# Collect all results into a single result dict. We know how many dicts
# with results to expect.
resultdict = {}
for i in range(nprocs):
resultdict.update(out_q.get())
# Wait for all worker processes to finish
for p in procs:
p.join()
return resultdict
我得到的错误是
File "E:\....\file.py", line 109, in <module>
print (mp_factorizer(range(100000),1))
File "E:\....\file.py", line 88, in mp_factorizer
p.start()
File "E:\...\Python\Install\lib\multiprocessing\process.py", line 105, in start
self._popen = self.+Popen(self)
File "E:\...\Python\Install\lib\multiprocessing\context.py", line 212, in _Popen
return default_context.get_context().Process._Popen(process_obj)
File "E:\...\Python\Install\lib\multiprocessing\context.py", line 313, in _Popen
return Popen(process_obj)
File "E:\...\Python\Install\lib\multiprocessing\popen_spawn_win32.py", line 66, in __init__
reduction.dump(process_obj, to_child)
File "E:\...\Python\Install\lib\multiprocessing\reduction.py", line 59, in dump
ForkingPickler(file, protocol).dump(obj)
_pickle.PicklingError: Can't pickle <class '_thread.lock'>: attribute lookup lock on _thread failed
答案 0 :(得分:2)
这是一个完整的程序,在Python 3.5.1下运行(但在Python 2下也能正常工作)。这样您就可以看到需要完成的所有。它实际上并没有分解任何东西 - 工人的胆量被非常简单的代码所取代,因为在最低级别完成的计算与你遇到的任何问题无关:
import multiprocessing as mp
import math
def worker(nums, out_q):
outdict = {}
for n in nums:
outdict[n] = 2 * n
out_q.put(outdict)
def mp_factorizer(nums, nprocs):
out_q = mp.Queue()
chunksize = int(math.ceil(len(nums) / float(nprocs)))
procs = []
for i in range(nprocs):
p = mp.Process(
target=worker,
args=(nums[chunksize * i:chunksize * (i + 1)],
out_q))
procs.append(p)
p.start()
resultdict = {}
for i in range(nprocs):
resultdict.update(out_q.get())
for p in procs:
p.join()
return resultdict
if __name__ == "__main__":
print(mp_factorizer(range(100), 3))