我有一张excel表,其中显示了如下生命表,请注意q(x)是年龄x和x + 1之间死亡的概率。我现在关注的是65岁以后的死亡概率,我想知道一个人在65岁时死亡并且在100岁时去世的可能性以及一个65岁的人在85岁时去世的可能性吗?
Probability
of dying
between
ages x to x+1
Age q(x)
0-1 0.006667
1-2 0.000449
2-3 0.000322
3-4 0.000247
4-5 0.000178
5-6 0.000166
6-7 0.000147
7-8 0.000129
8-9 0.000109
9-10 0.000087
10-11 0.000072
11-12 0.000078
12-13 0.000121
13-14 0.000209
14-15 0.000328
15-16 0.000451
16-17 0.000569
17-18 0.000690
18-19 0.000817
19-20 0.000945
20-21 0.001084
21-22 0.001216
22-23 0.001311
23-24 0.001354
24-25 0.001358
25-26 0.001348
26-27 0.001344
27-28 0.001345
28-29 0.001359
29-30 0.001384
30-31 0.001414
31-32 0.001444
32-33 0.001475
33-34 0.001506
34-35 0.001542
35-36 0.001592
36-37 0.001659
37-38 0.001738
38-39 0.001830
39-40 0.001941
40-41 0.002064
41-42 0.002217
42-43 0.002421
43-44 0.002684
44-45 0.002987
45-46 0.003303
46-47 0.003624
47-48 0.003968
48-49 0.004342
49-50 0.004746
50-51 0.005172
51-52 0.005617
52-53 0.006093
53-54 0.006611
54-55 0.007174
56-57 0.008451
57-58 0.009121
58-59 0.009775
59-60 0.010415
60-61 0.011075
61-62 0.011791
62-63 0.012577
63-64 0.013484
64-65 0.014542
65-66 0.015783
66-67 0.017195
67-68 0.018699
68-69 0.020247
69-70 0.021917
70-71 0.023725
71-72 0.025734
72-73 0.028077
73-74 0.030750
74-75 0.033815
75-76 0.037090
76-77 0.040540
77-78 0.044677
78-79 0.049227
79-80 0.054348
80-81 0.060110
81-82 0.066576
82-83 0.073449
83-84 0.080709
84-85 0.090777
85-86 0.101080
86-87 0.112324
87-88 0.124544
88-89 0.137762
89-90 0.151991
90-91 0.167224
91-92 0.183440
92-93 0.200596
93-94 0.218632
94-95 0.237462
95-96 0.256985
96-97 0.277076
97-98 0.297597
98-99 0.318395
99-100 0.339311
100+ 1.000000
答案 0 :(得分:0)
答案很简单(假设数据在A1:B101没有标题/开始年龄是F1 /结束年龄是F2):
=1-PRODUCT(1-INDEX(B:B,F1+1):INDEX(B:B,F2))
这是一个数组公式,必须用 ctrl + shift + 输入确认!
注意:公式将在年龄> 55时失败,因为没有55-56范围!
答案 1 :(得分:0)
设置随机变量X [i],当一个人在i时还活着时,它等于1,否则等于0。
然后使用条件概率q(x) = P{X[x]=0|X[x-1]=1...X[1]=1,X[0]=1}
您要计算的是P{X[85]=0,X[84]=1...X[66]=1|X[65]=1,X[64]=1...X[0]=1}
,将其设置为ANS。
所以,尝试一下:
ANS = P{X[85]=0,X[84]=1...X[66]=1|X[65]=1,X[64]=1...X[0]=1}
(using probabilistic decomposition) =
P{X[85]=0|X[84]=1,X[83]=1...X[0]=1} * P{X[84]=1|X[83]=1,X[82]=1...X[0]=1}
* P{X[83]=1|X[82]=1,X[81]=1...X[0]=1} * P{X[82]=1|X[81]=1,X[80]=1...X[0]=1}
* ... * P{X[66]=1|X[65]=1,X[64]=1...X[0]=1}
=q(85)[1-q(84)][1-q(83)]...[1-q(66)]