使用波束搜索实现seq2seq

时间:2016-05-04 12:20:22

标签: python tensorflow

我现在正在基于tensorflow提供的示例代码实现 seq2seq 模型。我想获得一个前5个解码器输出来进行强化学习。

然而,他们使用注意力解码器实现了翻译模型,因此,我应该实现波束搜索以获得 top-k 结果。

现在有一部分代码正在实现(此代码已添加到translate.py)。

https://github.com/tensorflow/tensorflow/issues/654

引用
with tf.Graph().as_default():
  beam_size = FLAGS.beam_size # Number of hypotheses in beam
  num_symbols = FLAGS.tar_vocab_size # Output vocabulary size
  embedding_size = 10
  num_steps = 5
  embedding = tf.zeros([num_symbols, embedding_size])
  output_projection = None

  log_beam_probs, beam_symbols, beam_path = [], [], []

  def beam_search(prev, i):
    if output_projection is not None:
      prev = tf.nn.xw_plus_b(prev, output_projection[0], output_projection[1])

    probs = tf.log(tf.nn.softmax(prev))

    if i > 1:
      probs = tf.reshape(probs + log_beam_probs[-1], [-1, beam_size * num_symbols])

    best_probs, indices = tf.nn.top_k(probs, beam_size)
    indices = tf.stop_gradient(tf.squeeze(tf.reshape(indices, [-1, 1])))
    best_probs = tf.stop_gradient(tf.reshape(best_probs, [-1, 1]))

    symbols = indices % num_symbols      # which word in vocabulary
    beam_parent = indices // num_symbols # which hypothesis it came from

    beam_symbols.append(symbols)
    beam_path.append(beam_parent)
    log_beam_probs.append(best_probs)

    return tf.nn.embedding_lookup(embedding, symbols)

  # Setting up graph.
  inputs = [tf.placeholder(tf.float32, shape=[None, num_symbols]) for i in range(num_steps)]

  for i in range(num_steps):
    beam_search(inputs[i], i+1)

  input_vals = tf.zeros([1, beam_size], dtype=tf.float32)

  input_feed = {inputs[i]: input_vals[i][:beam_size, :] for i in xrange(num_steps)}
  output_feed = beam_symbols + beam_path + log_beam_probs
  session = tf.InteractiveSession()
  outputs = session.run(output_feed, feed_dict=input_feed)

  print("Top_5 Sentences ")
  for predicted in enumerate(outputs[:5]):
    print(list(predicted))
    print("\n")

在input_feed部分,出现错误:

ValueError: Shape (1, 12) must have rank 1

我的代码有没有问题要做 beam-search

1 个答案:

答案 0 :(得分:2)

经过验证的真实演示:

# -*- coding: utf-8 -*-

from __future__ import unicode_literals, print_function
from __future__ import absolute_import
from __future__ import division

import tensorflow as tf

tf.app.flags.DEFINE_integer('beam_size', 4, 'beam size for beam search decoding.')
tf.app.flags.DEFINE_integer('vocab_size', 40, 'vocabulary size.')
tf.app.flags.DEFINE_integer('batch_size', 5, 'the batch size.')
tf.app.flags.DEFINE_integer('num_steps', 10, 'the batch size.')
tf.app.flags.DEFINE_integer('embedding_size', 50, 'the batch size.')

FLAGS = tf.app.flags.FLAGS


with tf.Graph().as_default():
    batch_size = FLAGS.batch_size
    beam_size = FLAGS.beam_size  # Number of hypotheses in beam
    vocab_size = FLAGS.vocab_size  # Output vocabulary size
    num_steps = FLAGS.num_steps
    embedding_size = FLAGS.embedding_size
    embedding = tf.random_normal([vocab_size, embedding_size], -2, 4, dtype=tf.float32, seed=0)
    output_projection = [
        tf.random_normal([embedding_size, vocab_size], mean=2, stddev=1, dtype=tf.float32, seed=0),
        tf.random_normal([vocab_size], mean=0, stddev=1, dtype=tf.float32, seed=0),
    ]
    index_base = tf.reshape(
        tf.tile(tf.expand_dims(tf.range(batch_size) * beam_size, axis=1), [1, beam_size]), [-1])

    log_beam_probs, beam_symbols = [], []

    def beam_search(prev, i):
        if output_projection is not None:
            prev = tf.nn.xw_plus_b(prev, output_projection[0], output_projection[1])
            # (batch_size*beam_size, embedding_size) -> (batch_size*beam_size, vocab_size)

        log_probs = tf.nn.log_softmax(prev)

        if i > 1:
            # total probability
            log_probs = tf.reshape(tf.reduce_sum(tf.stack(log_beam_probs, axis=1), axis=1) + log_probs,
                                   [-1, beam_size * vocab_size])
            # (batch_size*beam_size, vocab_size) -> (batch_size, beam_size*vocab_size)

        best_probs, indices = tf.nn.top_k(log_probs, beam_size)
        # (batch_size, beam_size)
        indices = tf.squeeze(tf.reshape(indices, [-1, 1]))
        best_probs = tf.reshape(best_probs, [-1, 1])
        # (batch_size*beam_size)

        symbols = indices % vocab_size       # which word in vocabulary
        beam_parent = indices // vocab_size  # which hypothesis it came from

        beam_symbols.append(symbols)

        # (batch_size*beam_size, num_steps)
        real_path = beam_parent + index_base
        # get rid of the previous probability
        if i > 1:
            pre_sum = tf.reduce_sum(tf.stack(log_beam_probs, axis=1), axis=1)
            pre_sum = tf.gather(pre_sum, real_path)
        else:
            pre_sum = 0
        log_beam_probs.append(best_probs-pre_sum)
        # adapt the previous symbols according to the current symbol
        if i > 1:
            for j in range(i)[:0:-1]:
                beam_symbols[j-1] = tf.gather(beam_symbols[j-1], real_path)
                log_beam_probs[j-1] = tf.gather(log_beam_probs[j-1], real_path)

        return tf.nn.embedding_lookup(embedding, symbols)
        # (batch_size*beam_size, embedding_size)

    # Setting up graph.
    init_input = tf.placeholder(tf.float32, shape=[batch_size, embedding_size])
    next_input = init_input

    for i in range(num_steps):
        next_input = beam_search(next_input, i+1)

    seq_rank = tf.stack(values=beam_symbols, axis=1)
    seq_rank = tf.reshape(seq_rank, [batch_size, beam_size, num_steps])
    # (batch_size*beam_size, num_steps)

    init_in = tf.random_uniform([batch_size], minval=0, maxval=vocab_size, dtype=tf.int32, seed=0),
    init_emb = tf.squeeze(tf.nn.embedding_lookup(embedding, init_in))
    session = tf.InteractiveSession()
    init_emb = init_emb.eval()

    seq_rank = session.run(seq_rank, feed_dict={init_input: init_emb})
    best_seq = seq_rank[:, 1, :]
    for i in range(batch_size):
        print("rank %s" % i, end=": ")
        print(best_seq[i])

它简化了我的seq2seq模型中的光束搜索模型。 Python2.7和TF1.4