如何使用闪亮的应用程序响应用户输入进行pdf下载?

时间:2016-05-04 05:14:16

标签: r pdf shiny r-markdown shinydashboard

我想让我的闪亮应用程序生成的表格和条形图可以作为pdf报告下载。我可以在我第一次在本地计算机上启动应用程序时使用所选输入生成报告,但是当我切换输入时,它不会生成pdf上新输入的报告。

这是我的ui代码

require(shiny)
require(shinydashboard)
require(ggplot2)
require(ggthemes)

sample <- read.csv("new_sample2.csv", stringsAsFactors = FALSE)

header <- dashboardHeader(title = "XYZ School Student Dashboard", titleWidth = 370)

body <- dashboardBody(
tags$head(tags$style(HTML('
  .main-header .logo {
                        font-family: "Georgia", Times, "Times New Roman", serif;
                        font-weight: bold;
                        font-size: 20px;
                        }
                        '))),
fluidRow(
column(width = 9,
box(title = "Selected Student", width = NULL, solidHeader = TRUE, status = "info",
           textOutput("summary1"),
           textOutput("summary2"),
           textOutput("summary3")
),

       box(title = "Marks card", status = "info", width = NULL, solidHeader = TRUE, collapsible = TRUE,
           tableOutput("table")),
       box(title = "Marks card bar plot", status = "info", width = NULL, solidHeader = TRUE, collapsible = TRUE,
           plotOutput("plot"))
),

column(width = 3,
       box(title = "Select", background = "blue" ,width = NULL,
           selectInput("class", "Class", unique(sample$class)),
           selectInput("name", "Name", unique(sample$name)),
           selectInput("exams", "Exams", choices = c("1st Periodic Test", "1st Term", "2nd Periodic Test",
                                                     "2nd Term", "3rd Periodic Test", "4th Periodic Test",
                                                     "Final")),

           "Note: In the Bar Plot", 
           br(),
           "1. The black line is the average class mark for that particular subject.",
           br(),
           "2. The red line is the pass mark for that particular subject.",
           hr(),
           downloadButton("downloadReport", "Download report")
           )
       )
  )
)


ui <- dashboardPage(skin = "blue",
    header,
      dashboardSidebar(disable = TRUE),
        body
)  

这是我的服务器代码

server <- function(input, output, session){

output$summary1 <- renderText({
paste("Student Name: ", input$name)
})

output$summary2 <- renderText({
paste("Class: ", input$class)
})
output$summary3 <- renderText({
paste("Examination: ", input$exams)
})


getdataset <- reactive({
dataset <- sample[sample$class == input$class & sample$name == input$name & sample$examination == input$exams, ]
})

observe({
classInput <- input$class
updateSelectInput(session, "name", choices = sample$name[sample$class == classInput])
})

output$table <- renderTable({
dataset <- getdataset()
dataset[, c("date", "subject", "maximum_mark", "pass_mark", "obtain_mark", "class_ave", "pc", "exam_pc")]
})

plotInput <- reactive({
df <- getdataset()
ggplot(df, aes(x = subject, y = obtain_mark)) +
  theme_fivethirtyeight() +
  geom_bar(stat = "identity", fill = "#006699") +
  geom_text(aes(label = obtain_mark),vjust = -0.4) +
  geom_errorbar(data = getdataset(),
                aes(y = class_ave, ymax = class_ave,
                    ymin = class_ave), colour = "#000000") +
  geom_errorbar(data = getdataset(),
                aes(y = pass_mark, ymax = pass_mark,
                    ymin = pass_mark), colour = "red") +
  labs(title = paste(input$name,"'s", input$exams, "marks"), x = "", y = "Marks") +
  theme(axis.text=element_text(size=10, face = "bold")
  )
})

output$plot <- renderPlot({
print(plotInput())
 })

output$downloadReport <- downloadHandler(
filename = "Student-report.pdf",
content = function(file){
  inputEnv <- new.env()
  inputEnv$class <- input$class
  inputEnv$name <- input$name
  inputEnv$exams <- input$exams
  inputEnv$data <- getdataset()
  out = rmarkdown::render("student_report.Rmd", envir = inputEnv)
  file.rename(out, file)
     }
    )
   }

 shinyApp(ui, server)  

这是我放在app.R所在的同一文件夹中的.Rmd文件。

---
title: "school_report"
author: "Management"
date: "May 4, 2016"
output: pdf_document
---

```{r echo=FALSE}
plotInput()
```  

```{r echo=FALSE}
dataset <- getdataset()
dataset[, c("date", "subject", "maximum_mark", "pass_mark", "obtain_mark", "class_ave", "pc", "exam_pc")]
```  

该数据是学生在考试中评分的分数样本。

head(sample)
 class   name       examination       date        subject maximum_mark pass_mark obtain_mark  pc class_ave
1   1 Adison 1st Periodic Test 2015-03-23      English-I        20         8          14     70      15
2   1 Adison 1st Periodic Test 2015-03-24    Mathematics        20         8          19     95      16
3   1 Adison 1st Periodic Test 2015-03-25        Science        20         8          18     90      12
4   1 Adison 1st Periodic Test 2015-03-26          Hindi        20         8          20    100      15
5   1 Adison 1st Periodic Test 2015-03-27 Social Studies        20         8          19     95      11
6   1 Adison 1st Periodic Test 2015-03-28            M.M        20         8          20    100      14
 exam_pc
1 92.86
2 92.86
3 92.86
4 92.86
5 92.86
6 92.86  

tail(sample)
     class   name examination       date       subject maximum_mark pass_mark obtain_mark  pc class_ave
1851   2   Denver       Final 2015-12-10    English-II          100        40          93  93        59
1852   2   Denver       Final 2015-12-02       Drawing           50        20          25  50        34
1853   2   Denver       Final 2015-11-30            GK           50        20          50 100        42
1854   2   Denver       Final 2015-12-01 Moral Science           50        20          50 100        41
1855   2   Denver       Final 2015-12-02     Dictation           25        10          25 100        20
1856   2   Denver       Final 2015-11-30  Hand Writing           25        10          25 100        20
       exam_pc
 1851   87.89
 1852   87.89
 1853   87.89
 1854   87.89
 1855   87.89
 1856   87.89  

我真的很感谢你的帮助。

1 个答案:

答案 0 :(得分:4)

我很抱歉我花了很长时间才回到这一点。在看了我所做的事情之后,事实证明它比我记忆中的涉及更多。

这是我的示例应用代码

library(shiny)
library(ggplot2)
library(magrittr)

ui <- shinyUI(
  fluidPage(
    column(
      width = 2,
      selectInput(
        inputId = "x_var",
        label = "Select the X-variable",
        choices = names(mtcars)
      ),
      selectInput(
        inputId = "y_var",
        label = "Select the Y-variable",
        choices = names(mtcars)
      ),
      selectInput(
        inputId = "plot_type",
        label = "Select the plot type",
        choices = c("scatter plot", "boxplot")
      ),
      downloadButton(
        outputId = "downloader",
        label = "Download PDF"
      )
    ),
    column(
      width = 3,
      tableOutput("table")
    ),
    column(
      width = 7,
      plotOutput("plot")
    )
  )
)

server <- shinyServer(function(input, output, session){

  #****************************************
  #* Reactive Values

  table <- reactive({
    mtcars[, c(input[["x_var"]], input[["y_var"]])]
  })

  plot <- reactive({
    p <- ggplot(data = mtcars,
                mapping = aes_string(x = input[["x_var"]],
                                     y = input[["y_var"]]))
    if (input[["plot_type"]] == "scatter plot")
    {
      p + geom_point()
    }
    else
    {
      p + geom_boxplot()
    }
  })

  #****************************************
  #* Output Components

  output$table <- 
    renderTable({
      table()
    })

  output$plot <- 
    renderPlot({
      plot()
    })

  #****************************************
  #* Download Handlers

  output$downloader <- 
    downloadHandler(
      "results_from_shiny.pdf",
      content = 
        function(file)
        {
          rmarkdown::render(
            input = "report_file.Rmd",
            output_file = "built_report.pdf",
            params = list(table = table(),
                          plot = plot())
          ) 
          readBin(con = "built_report.pdf", 
                  what = "raw",
                  n = file.info("built_report.pdf")[, "size"]) %>%
            writeBin(con = file)
        }
    )
})

shinyApp(ui, server)

这是我的RMD(名为report_file.Rmd

---
title: "Parameterized Report for Shiny"
output: pdf_document
params:
  table: 'NULL'
  plot: 'NULL'
---

```{r}
params[["plot"]]
```

```{r}
params[["table"]]
```

要寻找的一些亮点

  • 请注意RMarkdown脚本的YAML前端存在params。这允许我们在调用rmarkdown::render(..., params = list(...))
  • 时传入要在脚本中使用的值列表
  • 我总是将PDF格式化为虚拟文件。这样很容易找到。
  • 我总是构建一个虚拟文件的原因是为了让下载处理程序工作,你需要读取PDF的位内容并使用file将其推送到writeBin参数。请参阅我的downloadHandler构建。
  • 使用参数化报告意味着您无需在rmarkdown脚本中重新创建输出。这项工作是在Shiny应用程序中完成的,参数化报告只是帮助您正确发送对象。 它与来回传递文件​​并不完全相同(尽管如果它很容易,我很想知道它)。

在此处详细了解参数化报告:http://rmarkdown.rstudio.com/developer_parameterized_reports.html