我正在尝试上传一个250MB的csv文件。基本上有400万行和6列时间序列数据(1分钟)。通常的程序是:
location = r'C:\Users\Name\Folder_1\Folder_2\file.csv'
df = pd.read_csv(location)
此过程大约需要20分钟!!!非常初步我已经探索了以下选项
我想知道是否有人比较过这些选项(或更多)并且有明显的赢家。如果没有人回答,将来我会发布我的结果。我现在没有时间。
答案 0 :(得分:47)
以下是我对DF的读写比较结果(形状:4000000 x 6,内存大小183.1 MB,未压缩CSV大小 - 492 MB)。
以下存储格式的比较:(CSV
,CSV.gzip
,Pickle
,HDF5
[各种压缩]):
read_s write_s size_ratio_to_CSV
storage
CSV 17.900 69.00 1.000
CSV.gzip 18.900 186.00 0.047
Pickle 0.173 1.77 0.374
HDF_fixed 0.196 2.03 0.435
HDF_tab 0.230 2.60 0.437
HDF_tab_zlib_c5 0.845 5.44 0.035
HDF_tab_zlib_c9 0.860 5.95 0.035
HDF_tab_bzip2_c5 2.500 36.50 0.011
HDF_tab_bzip2_c9 2.500 36.50 0.011
读
写入/保存
与未压缩CSV文件相关的文件大小比率
RAW DATA:
CSV:
In [68]: %timeit df.to_csv(fcsv)
1 loop, best of 3: 1min 9s per loop
In [74]: %timeit pd.read_csv(fcsv)
1 loop, best of 3: 17.9 s per loop
CSV.gzip:
In [70]: %timeit df.to_csv(fcsv_gz, compression='gzip')
1 loop, best of 3: 3min 6s per loop
In [75]: %timeit pd.read_csv(fcsv_gz)
1 loop, best of 3: 18.9 s per loop
味酸:
In [66]: %timeit df.to_pickle(fpckl)
1 loop, best of 3: 1.77 s per loop
In [72]: %timeit pd.read_pickle(fpckl)
10 loops, best of 3: 173 ms per loop
HDF(format='fixed'
)[默认]:
In [67]: %timeit df.to_hdf(fh5, 'df')
1 loop, best of 3: 2.03 s per loop
In [73]: %timeit pd.read_hdf(fh5, 'df')
10 loops, best of 3: 196 ms per loop
HDF(format='table'
):
In [37]: %timeit df.to_hdf('D:\\temp\\.data\\37010212_tab.h5', 'df', format='t')
1 loop, best of 3: 2.6 s per loop
In [38]: %timeit pd.read_hdf('D:\\temp\\.data\\37010212_tab.h5', 'df')
1 loop, best of 3: 230 ms per loop
HDF(format='table', complib='zlib', complevel=5
):
In [40]: %timeit df.to_hdf('D:\\temp\\.data\\37010212_tab_compress_zlib5.h5', 'df', format='t', complevel=5, complib='zlib')
1 loop, best of 3: 5.44 s per loop
In [41]: %timeit pd.read_hdf('D:\\temp\\.data\\37010212_tab_compress_zlib5.h5', 'df')
1 loop, best of 3: 854 ms per loop
HDF(format='table', complib='zlib', complevel=9
):
In [36]: %timeit df.to_hdf('D:\\temp\\.data\\37010212_tab_compress_zlib9.h5', 'df', format='t', complevel=9, complib='zlib')
1 loop, best of 3: 5.95 s per loop
In [39]: %timeit pd.read_hdf('D:\\temp\\.data\\37010212_tab_compress_zlib9.h5', 'df')
1 loop, best of 3: 860 ms per loop
HDF(format='table', complib='bzip2', complevel=5
):
In [42]: %timeit df.to_hdf('D:\\temp\\.data\\37010212_tab_compress_bzip2_l5.h5', 'df', format='t', complevel=5, complib='bzip2')
1 loop, best of 3: 36.5 s per loop
In [43]: %timeit pd.read_hdf('D:\\temp\\.data\\37010212_tab_compress_bzip2_l5.h5', 'df')
1 loop, best of 3: 2.5 s per loop
HDF(format='table', complib='bzip2', complevel=9
):
In [42]: %timeit df.to_hdf('D:\\temp\\.data\\37010212_tab_compress_bzip2_l9.h5', 'df', format='t', complevel=9, complib='bzip2')
1 loop, best of 3: 36.5 s per loop
In [43]: %timeit pd.read_hdf('D:\\temp\\.data\\37010212_tab_compress_bzip2_l9.h5', 'df')
1 loop, best of 3: 2.5 s per loop
PS我无法在我的 Windows 笔记本上测试feather
DF信息:
In [49]: df.shape
Out[49]: (4000000, 6)
In [50]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4000000 entries, 0 to 3999999
Data columns (total 6 columns):
a datetime64[ns]
b datetime64[ns]
c datetime64[ns]
d datetime64[ns]
e datetime64[ns]
f datetime64[ns]
dtypes: datetime64[ns](6)
memory usage: 183.1 MB
In [41]: df.head()
Out[41]:
a b c \
0 1970-01-01 00:00:00 1970-01-01 00:01:00 1970-01-01 00:02:00
1 1970-01-01 00:01:00 1970-01-01 00:02:00 1970-01-01 00:03:00
2 1970-01-01 00:02:00 1970-01-01 00:03:00 1970-01-01 00:04:00
3 1970-01-01 00:03:00 1970-01-01 00:04:00 1970-01-01 00:05:00
4 1970-01-01 00:04:00 1970-01-01 00:05:00 1970-01-01 00:06:00
d e f
0 1970-01-01 00:03:00 1970-01-01 00:04:00 1970-01-01 00:05:00
1 1970-01-01 00:04:00 1970-01-01 00:05:00 1970-01-01 00:06:00
2 1970-01-01 00:05:00 1970-01-01 00:06:00 1970-01-01 00:07:00
3 1970-01-01 00:06:00 1970-01-01 00:07:00 1970-01-01 00:08:00
4 1970-01-01 00:07:00 1970-01-01 00:08:00 1970-01-01 00:09:00
文件大小:
{ .data } » ls -lh 37010212.* /d/temp/.data
-rw-r--r-- 1 Max None 492M May 3 22:21 37010212.csv
-rw-r--r-- 1 Max None 23M May 3 22:19 37010212.csv.gz
-rw-r--r-- 1 Max None 214M May 3 22:02 37010212.h5
-rw-r--r-- 1 Max None 184M May 3 22:02 37010212.pickle
-rw-r--r-- 1 Max None 215M May 4 10:39 37010212_tab.h5
-rw-r--r-- 1 Max None 5.4M May 4 10:46 37010212_tab_compress_bzip2_l5.h5
-rw-r--r-- 1 Max None 5.4M May 4 10:51 37010212_tab_compress_bzip2_l9.h5
-rw-r--r-- 1 Max None 17M May 4 10:42 37010212_tab_compress_zlib5.h5
-rw-r--r-- 1 Max None 17M May 4 10:36 37010212_tab_compress_zlib9.h5
<强>结论:强>
Pickle
和HDF5
要快得多,但HDF5
更方便 - 您可以在里面存储多个表/框架,您可以有条件地读取数据(查看{{1} } read_hdf()}中的参数,您还可以存储压缩的数据(where
- 更快,zlib
- 提供更好的压缩率)等。
PS如果您可以构建/使用bzip2
- 与feather-format
和HDF5
PPS:不要将Pickle用于大数据框,因为您最终可能会收到SystemError: error return without exception set错误消息。它还描述了here和here。
答案 1 :(得分:0)
您可以使用datatable加载csv文件,然后将其隐藏到pandas数据帧,这比使用pandas read_csv()加载要快得多
import datatable as dt
dt_df = dt.fread(csv_file)
pd_df = dt_df.to_pandas()
在1 Go的csv文件中,熊猫read_csv大约需要34分钟,而datable fread只需40秒,这是一个巨大的差异(x51更快)。
您还可以只使用数据表数据框,而无需转换为pandas数据框(这取决于所需的功能)。数据表的有用介绍:https://www.kaggle.com/sudalairajkumar/getting-started-with-python-datatable