如何使用OSM和python找到两个坐标之间的路径和距离?

时间:2016-05-03 02:45:11

标签: python geocoding driving-distance

我需要使用 Python 和开源映射服务(最好是OSM )来获取两组坐标之间的行驶时间和距离。

我发现很多不同的python库可以计算两个给定点(位置)之间的距离,但它不是行驶距离。

我还注意到使用Google Distance Matrix API和JSON解释器我几乎可以做到这一点,但我不想在这个项目中使用谷歌。 请告知使用开放街道地图网络的相应图书馆并计算旅行时间和距离,并且最好允许创建所选路线的地图。

P.S。我注意到使用OSM完成了类似的任务,但没有使用python

2 个答案:

答案 0 :(得分:5)

您可以使用 OSMnx

这是一个示例代码,可以满足您的要求:

import osmnx as ox
import networkx as nx
from datetime import timedelta


# The place where your 2 points are located. It will be used to create a graph from the OSM data
# In this example, the 2 points are two addresses in Manhattan, so we choose "Manhattan"
# It could be a bounding box too, or an area around a point
graph_area = ("Manhattan, New York, USA")

# Create the graph of the area from OSM data. It will download the data and create the graph
G = ox.graph_from_place(graph_area, network_type='drive')

# OSM data are sometime incomplete so we use the speed module of osmnx to add missing edge speeds and travel times
G = ox.add_edge_speeds(G)
G = ox.add_edge_travel_times(G)

# Save graph to disk if you want to reuse it
ox.save_graphml(G, "Manhattan.graphml")

# Load the graph
#G = ox.load_graphml("Manhattan.graphml")

# Plot the graph
fig, ax = ox.plot_graph(G, figsize=(10, 10), node_size=0, edge_color='y', edge_linewidth=0.2)

# Two pairs of (lat,lng) coordinates
origin_coordinates = (40.70195053163349, -74.01123198479581)
destination_coordinates = (40.87148739347057, -73.91517498611597)

# If you want to take an address (osmx will use Nominatim service for this)
# origin_coordinates = ox.geocode("2 Broad St, New York, NY 10005")

# In the graph, get the nodes closest to the points
origin_node = ox.get_nearest_node(G, origin_coordinates)
destination_node = ox.get_nearest_node(G, destination_coordinates)


# Get the shortest route by distance
shortest_route_by_distance = ox.shortest_path(G, origin_node, destination_node, weight='length')

# Plot the shortest route by distance
fig, ax = ox.plot_graph_route(G, shortest_route_by_distance, route_color='y', route_linewidth=6, node_size=0)

# Get the shortest route by travel time
shortest_route_by_travel_time = ox.shortest_path(G, origin_node, destination_node, weight='length')

# Plot the shortest route by travel time
fig, ax = ox.plot_graph_route(G, shortest_route_by_travel_time, route_color='y', route_linewidth=6, node_size=0)

# Plot the 2 routes
fig, ax = ox.plot_graph_routes(G, routes=[shortest_route_by_distance, shortest_route_by_travel_time], route_colors=['r', 'y'], route_linewidth=6, node_size=0)

# Get the travel time, in seconds
# Note here that we use "nx" (networkx), not "ox" (osmnx)
travel_time_in_seconds = nx.shortest_path_length(G, origin_node, destination_node, weight='travel_time')
print(travel_time_in_seconds)

#The travel time in "HOURS:MINUTES:SECONDS" format
travel_time_in_hours_minutes_seconds = str(timedelta(seconds=travel_time_in_seconds))
print(travel_time_in_hours_minutes_seconds)

# Get the distance in meters
distance_in_meters = nx.shortest_path_length(G, origin_node, destination_node, weight='length')
print(distance_in_meters)
# Distance in kilometers
distance_in_kilometers = distance_in_meters / 1000
print(distance_in_kilometers)

顺便感谢 GeoffBoeing 提供了这个很棒的图书馆!

答案 1 :(得分:0)

刚刚搜索过你,我没有测试过,但这似乎是你在寻找的东西:http://wiki.openstreetmap.org/wiki/PyrouteLib