我的分析仪设置如下:
"analyzer": {
"edgeNgram_autocomplete": {
"type": "custom",
"tokenizer": "standard",
"filter": ["lowercase", "autocomplete"]
},
"full_name": {
"filter":["standard","lowercase","asciifolding"],
"type":"custom",
"tokenizer":"standard"
}
我的过滤器:
"filter": {
"autocomplete": {
"type": "edgeNGram",
"side":"front",
"min_gram": 1,
"max_gram": 50
}
名称字段分析器:
"textbox": {
"_parent": {
"type": "document"
},
"properties": {
"text": {
"fields": {
"text": {
"type":"string",
"analyzer":"full_name"
},
"autocomplete": {
"type": "string",
"index_analyzer": "edgeNgram_autocomplete",
"search_analyzer": "full_name",
"analyzer": "full_name"
}
},
"type":"multi_field"
}
}
}
将所有内容放在一起,组成我对docstore索引的映射:
PUT http://localhost:9200/docstore
{
"settings": {
"analysis": {
"analyzer": {
"edgeNgram_autocomplete": {
"type": "custom",
"tokenizer": "standard",
"filter": ["lowercase", "autocomplete"]
},
"full_name": {
"filter":["standard","lowercase","asciifolding"],
"type":"custom",
"tokenizer":"standard"
}
},
"filter": {
"autocomplete": {
"type": "edgeNGram",
"side":"front",
"min_gram": 1,
"max_gram": 50
} }
}
},
"mappings": {
"space": {
"properties": {
"name": {
"type": "string",
"index": "not_analyzed"
}
}
},
"document": {
"_parent": {
"type": "space"
},
"properties": {
"name": {
"type": "string",
"index": "not_analyzed"
}
}
},
"textbox": {
"_parent": {
"type": "document"
},
"properties": {
"bbox": {
"type": "long"
},
"text": {
"fields": {
"text": {
"type":"string",
"analyzer":"full_name"
},
"autocomplete": {
"type": "string",
"index_analyzer": "edgeNgram_autocomplete",
"search_analyzer": "full_name",
"analyzer":"full_name"
}
},
"type":"multi_field"
}
}
},
"entity": {
"_parent": {
"type": "document"
},
"properties": {
"bbox": {
"type": "long"
},
"name": {
"type": "string",
"index": "not_analyzed"
}
}
}
}
}
添加空格以容纳所有文档:
POST http://localhost:9200/docstore/space
{
"name": "Space 1"
}
当用户输入单词:proj
这应该返回,所有文字:
但它什么也没有回报。
我的查询:
POST http://localhost:9200/docstore/textbox/_search
{
"query": {
"match": {
"text": "proj"
}
},
"filter": {
"has_parent": {
"type": "document",
"query": {
"term": {
"name": "1-a1-1001.pdf"
}
}
}
}
}
如果我按project
搜索,我会:
{ "took": 4,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 3.0133555,
"hits": [
{
"_index": "docstore",
"_type": "textbox",
"_id": "AVRuV2d_f4y6IKuxK35g",
"_score": 3.0133555,
"_routing": "AVRuVvtLf4y6IKuxK33f",
"_parent": "AVRuV2cMf4y6IKuxK33g",
"_source": {
"bbox": [
8750,
5362,
9291,
5445
],
"text": [
"Sample Project"
]
}
},
{
"_index": "docstore",
"_type": "textbox",
"_id": "AVRuV2d_f4y6IKuxK35Y",
"_score": 2.4106843,
"_routing": "AVRuVvtLf4y6IKuxK33f",
"_parent": "AVRuV2cMf4y6IKuxK33g",
"_source": {
"bbox": [
8645,
5170,
9070,
5220
],
"text": [
"Project Name and Address"
]
}
}
]
}
}
也许我的edgengram不适合这个? 我是说:
side":"front"
我应该采用不同的方式吗?
有谁知道我做错了什么?
答案 0 :(得分:1)
您的查询实际上应该尝试匹配text.autocomplete
而不是text
:
"query": {
"match": {
"text.autocomplete": "proj"
}
}
答案 1 :(得分:1)
问题在于自动完成索引分析器字段名称。
变化:
"index_analyzer": "edgeNgram_autocomplete"
要:
"analyzer": "edgeNgram_autocomplete"
同样的搜索(@Andrei Stefan)在他的回答中显示:
POST http://localhost:9200/docstore/textbox/_search
{
"query": {
"match": {
"text.autocomplete": "proj"
}
}
}
它会按预期工作!
我已在Elasticsearch 2.3
顺便说一下,multi_field
类型为deprecated。
希望我能帮助:)