我有一些这样的数据:
import pandas as pd
df = pd.DataFrame(index = range(1,13), columns=['school', 'year', 'metric', 'values'], )
df['school'] = ['id1']*6 + ['id2']*6
df['year'] = (['2015']*3 + ['2016']*3)*2
df['metric'] = ['tuition', 'admitsize', 'avgfinaid'] * 4
df['values'] = range(1,13)
df
school year metric values
1 id1 2015 tuition 1
2 id1 2015 admitsize 2
3 id1 2015 avgfinaid 3
4 id1 2016 tuition 4
5 id1 2016 admitsize 5
6 id1 2016 avgfinaid 6
7 id2 2015 tuition 7
8 id2 2015 admitsize 8
9 id2 2015 avgfinaid 9
10 id2 2016 tuition 10
11 id2 2016 admitsize 11
12 id2 2016 avgfinaid 12
我想调整指标&将列格式化为宽格式。也就是说,我想:
school year tuition admitsize avgfinaid
id1 2015 1 2 3
id1 2016 4 5 6
id2 2015 7 8 9
id2 2016 10 11 12
如果这是R,我会做类似的事情:
df2 <- dcast(df, id + year ~ metric, value.var = "values")
我如何在熊猫中这样做?我在大熊猫文档中阅读了this (otherwise very helpful) SO answer和this (also otherwise excellent) example,但没有理解如何将其应用到我的需求中。我不需要像dcast一样的单行,只是如何在标准DataFrame(不是groupby,multi-index或其他花哨的对象)中获得结果的示例。
答案 0 :(得分:12)
您可以使用pivot_table():
In [23]: df2 = (df.pivot_table(index=['school', 'year'], columns='metric',
....: values='values')
....: .reset_index()
....: )
In [24]:
In [24]: df2
Out[24]:
metric school year admitsize avgfinaid tuition
0 id1 2015 2 3 1
1 id1 2016 5 6 4
2 id2 2015 8 9 7
3 id2 2016 11 12 10