我一直在尝试将apriori algorithm
实施到我的数据库中。因为我这样做,我意识到apriori算法返回s4对象。实际上,如果我不想将结果写入数据库,这不是问题。
我开始像这样编写我的r代码; 首先,我加载与我的分析相关的包
library(DBI)
library(rJava)
library(RJDBC)
library(Matrix)
library(grid)
library(arules)
library(arulesViz)
getwd()
setwd("D:/R")
getwd()
jdbcDriver<-JDBC(driverClass = "oracle.jdbc.OracleDriver",classPath = "D:/R/ojdbc6.jar")
jdbcConnection<-dbConnect(jdbcDriver,"jdbc:oracle:ip:port","user","pass")
ana_sorgu<- dbGetQuery(jdbcConnection,"SELECT action_id, product_cat FROM table")
urunler<-dbGetQuery(jdbcConnection,"select distinct product_cat from product_cat")
i <- split(ana_sorgu$PRODUCT_CAT,ana_sorgu$ACTION_ID)
txn <- as(i, "transactions")
sorgu2<-as.list(urunler$PRODUCT_CAT)
for(row2 in 1:nrow(urunler)) {
basket_rules<-apriori(data=txn, parameter=list(supp=0.001,conf = 0.4), appearance = list(default="lhs",rhs=sorgu2[[row2]]))
deneme<-inspect(basket_rules)#i guess that something has to be changed to write here releated to next for loop but i can't
for(row in 1:length(basket_rules)) {
jdbcDriver2<-JDBC(driverClass = "oracle.jdbc.OracleDriver",classPath = "D:/R/ojdbc6.jar", identifier.quote = "\"")
jdbcConnection2<-dbConnect(jdbcDriver,"jdbc:oracle:ip:port","user","pass")
sorgu <- paste0("insert into market_basket_analysis_3 (lhs,rhs,support,confidence,lift) values ('",deneme$lhs[[row]],"','",deneme$rhs[[row]],"','",deneme$support[[row]],"','",deneme$confidence[[row]],"','",deneme$lift[[row]],"')")
print(sorgu)
result<-dbSendUpdate(jdbcConnection2,sorgu)
dbDisconnect(jdbcConnection2)
}}
我创建了一个名为sorgu2的变量,使我的分析动态分类产品类别,所以我在as.list()中实现了urunler $ PRODUCT_CAT。因此我可以在rhs中使用它,在第一个for循环中。
最后,当我执行这个鳕鱼时,它会返回;
Apriori
Parameter specification:
confidence minval smax arem aval originalSupport support minlen maxlen target ext
0.4 0.1 1 none FALSE TRUE 0.001 1 10 rules FALSE
Algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE
Absolute minimum support count: 854
set item appearances ...[1 item(s)] done [0.00s].
set transactions ...[793 item(s), 854614 transaction(s)] done [0.34s].
sorting and recoding items ... [350 item(s)] done [0.05s].
creating transaction tree ... done [0.99s].
checking subsets of size 1 2 3 4 done [0.20s].
writing ... [0 rule(s)] done [0.00s].
creating S4 object ... done [0.12s].
[1] "insert into market_basket_analysis_3 (lhs,rhs,support,confidence,lift) values ('','','','','')"
[1] "insert into market_basket_analysis_3 (lhs,rhs,support,confidence,lift) values ('','','','','')"
Apriori
Parameter specification:
confidence minval smax arem aval originalSupport support minlen maxlen target ext
0.4 0.1 1 none FALSE TRUE 0.001 1 10 rules FALSE
Algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE
Absolute minimum support count: 854
set item appearances ...[1 item(s)] done [0.00s].
set transactions ...[793 item(s), 854614 transaction(s)] done [0.33s].
sorting and recoding items ... [350 item(s)] done [0.05s].
creating transaction tree ... done [0.98s].
checking subsets of size 1 2 3 4 done [0.20s].
writing ... [0 rule(s)] done [0.00s].
creating S4 object ... done [0.12s].
[1] "insert into market_basket_analysis_3 (lhs,rhs,support,confidence,lift) values ('','','','','')"
[1] "insert into market_basket_analysis_3 (lhs,rhs,support,confidence,lift) values ('','','','','')"
Error in asMethod(object) :
NISASTA PATATES ALGR2 is an unknown item label
我哪里做错了?提前谢谢。
答案 0 :(得分:2)
您可以使用unclass
查看由arules
生成的S4对象的内容(仅显示我称为deneme
的对象的前5个元素,与您的一样,但显然有不同的内容):
> unclass(deneme[1:5])
<S4 Type Object>
attr(,"quality")
support confidence lift
4 0.0001528538 1.0 1362.9583
38 0.0001222830 1.0 1362.9583
27287 0.0001222830 0.8 872.2933
94270 0.0001222830 0.8 872.2933
226 0.0001222830 0.8 817.7750
attr(,"info")
attr(,"info")$data
msweb.trans
attr(,"info")$ntransactions
[1] 32711
attr(,"info")$support
[1] 1e-04
attr(,"info")$confidence
[1] 0.8
attr(,"lhs")
itemMatrix in sparse format with
5 rows (elements/transactions) and
284 columns (items)
attr(,"rhs")
itemMatrix in sparse format with
5 rows (elements/transactions) and
284 columns (items)
您可以使用attr
访问每个属性:
> attr(deneme[1:5], "quality")
support confidence lift
4 0.0001528538 1.0 1362.9583
38 0.0001222830 1.0 1362.9583
27287 0.0001222830 0.8 872.2933
94270 0.0001222830 0.8 872.2933
226 0.0001222830 0.8 817.7750
其中quality
是一个包含3列的数据框,您可以使用$
访问每个列:
> attr(deneme[1:5], "quality")$confidence
[1] 1.0 1.0 0.8 0.8 0.8
虽然lhs
和rhs
是itemMatrix
个对象,但您可以使用inspect来查看实际项目,如下所示:
as(as(attr(deneme[1:5], "lhs"), "transactions"), "data.frame")$items
我会说这个提示你可以修改你的代码插入到数据库中;如果您仍有疑问,请告诉我。
希望它有所帮助。
编辑:不要使用
as(as(attr(basket_rules, "lhs"), "transactions"), "data.frame")$items[[row]]
但是
as(as(attr(basket_rules[row], "lhs"), "transactions"), "data.frame")$items
您的最终代码如下所示:
for(row2 in 1:nrow(urunler)) {
basket_rules<-apriori(data=txn, parameter=list(supp=0.001,conf = 0.4), appearance = list(default="lhs",rhs=sorgu2[[row2]]))
for(row in 1:length(basket_rules)) {
jdbcDriver2<-JDBC(driverClass = "oracle.jdbc.OracleDriver",classPath = "D:/R/ojdbc6.jar", identifier.quote = "\"")
jdbcConnection2<-dbConnect(jdbcDriver,"jdbc:oracle:ip:port","user","pass")
sorgu <- paste0("insert into market_basket_analysis_3 (lhs,rhs,support,confidence,lift) values ('",as(as(attr(basket_rules[row], "lhs"), "transactions"), "data.frame")$items,"','",as(as(attr(basket_rules[row], "rhs"), "transactions"), "data.frame")$items,"','",attr(basket_rules[row],"quality")$support,"','",attr(basket_rules[row],"quality")$confidence,"','",attr(basket_rules[row],"quality")$lift,"')")
result<-dbSendUpdate(jdbcConnection2,sorgu)
dbDisconnect(jdbcConnection2)
}
}