我正在尝试使用dplyr来总结基于2组的数据集:“年”和“区域”。这就是数据集的样子:
Year Area Num
1 2000 Area 1 99
2 2001 Area 3 85
3 2000 Area 1 60
4 2003 Area 2 90
5 2002 Area 1 40
6 2002 Area 3 30
7 2004 Area 4 10
...
最终结果应如下所示:
Year Area Mean
1 2000 Area 1 100
2 2000 Area 2 80
3 2000 Area 3 89
4 2001 Area 1 80
5 2001 Area 2 85
6 2001 Area 3 59
7 2002 Area 1 90
8 2002 Area 2 88
...
请原谅“均值”的值,它们已经弥补。
示例数据集的代码:
df <- structure(list(
Year = c(2000, 2001, 2000, 2003, 2002, 2002, 2004),
Area = structure(c(1L, 3L, 1L, 2L, 1L, 3L, 4L),
.Label = c("Area 1", "Area 2", "Area 3", "Area 4"),
class = "factor"),
Num = structure(c(7L, 5L, 4L, 6L, 3L, 2L, 1L),
.Label = c("10", "30", "40", "60", "85", "90", "99"),
class = "factor")),
.Names = c("Year", "Area", "Num"),
class = "data.frame", row.names = c(NA, -7L))
df$Num <- as.numeric(df$Num)
我尝试过的事情:
df.meanYear <- df %>%
group_by(Year) %>%
group_by(Area) %>%
summarize_each(funs(mean(Num)))
但它只是用平均值替换每个值,而不是预期的结果。
如果可能的话,请提供替代方法(即非dplyr)方法,因为我还是R的新手。
答案 0 :(得分:6)
这是你在找什么?
library(dplyr)
df <- group_by(df, Year, Area)
df <- summarise(df, avg = mean(Num))
答案 1 :(得分:0)
我们可以使用data.table
library(data.table)
setDT(df)[, .(avg = mean(Num)) , by = .(Year, Area)]