naiveBayes在使用非零拉普拉斯参数时给出意想不到的结果(包e1071)

时间:2016-04-26 21:15:03

标签: r machine-learning probability

我正在尝试使用e1071包中的naiveBayes()函数。当我添加一个非零laplace参数时,我得到的概率估计值没有变化,我不明白为什么。

示例:

library(e1071)

# Generate data
train.x <- data.frame(x1=c(1,1,0,0), x2=c(1,0,1,0))
train.y <- factor(c("cat", "cat", "dog", "dog"))
test.x <- data.frame(x1=c(1), x2=c(1))

# without laplace smoothing
classifier <- naiveBayes(x=train.x, y=train.y, laplace=0)
predict(classifier, test.x, type="raw") # returns (1, 0.00002507)

# with laplace smoothing
classifier <- naiveBayes(x=train.x, y=train.y, laplace=1)
predict(classifier, test.x, type="raw") # returns (1, 0.00002507)

我希望在这种情况下可能会发生变化,因为“dog”类的所有训练实例的 x1 都为0。要检查这一点,使用Python

是一回事

Python示例:

import numpy as np
from sklearn.naive_bayes import BernoulliNB

train_x = pd.DataFrame({'x1':[1,1,0,0], 'x2':[1,0,1,0]})
train_y = np.array(["cat", "cat", "dog", "dog"])
test_x = pd.DataFrame({'x1':[1,], 'x2':[1,]})

# alpha (i.e. laplace = 0)
classifier = BernoulliNB(alpha=.00000001)
classifier.fit(X=train_x, y=train_y)
classifier.predict_proba(X=test_x) # returns (1, 0)

# alpha (i.e. laplace = 1)
classifier = BernoulliNB(alpha=1)
classifier.fit(X=train_x, y=train_y)
classifier.predict_proba(X=test_x) # returns (.75, .25)

为什么我使用e1071获得了这个意想不到的结果?

2 个答案:

答案 0 :(得分:3)

拉普拉斯估计仅对分类特征有效,而不是数字特征。您可以在源代码中找到:

## estimation-function
est <- function(var)
    if (is.numeric(var)) {
        cbind(tapply(var, y, mean, na.rm = TRUE),
              tapply(var, y, sd, na.rm = TRUE))
    } else {
        tab <- table(y, var)
        (tab + laplace) / (rowSums(tab) + laplace * nlevels(var))
    }

对于数值,使用高斯估计。因此,将您的数据转换为因子,您就可以了。

train.x <- data.frame(x1=c("1","1","0","0"), x2=c("1","0","1","0"))
train.y <- factor(c("cat", "cat", "dog", "dog"))
test.x <- data.frame(x1=c("1"), x2=c("1"))

# without laplace smoothing
classifier <- naiveBayes(x=train.x, y=train.y, laplace=0)
predict(classifier, test.x, type="raw") # returns (100% for dog)

# with laplace smoothing
classifier <- naiveBayes(x=train.x, y=train.y, laplace=1)
predict(classifier, test.x, type="raw") # returns (75% for dog)

答案 1 :(得分:1)

这个主要的facepalm。 naiveBayes()方法将 x1 x2 解释为数字变量,因此尝试在内部使用高斯条件概率分布(我认为)。将变量编码为因子解决了我的问题。

train.x <- data.frame(x1=factor(c(1,1,0,0)), x2=factor(c(1,0,1,0)))
train.y <- factor(c("cat", "cat", "dog", "dog"))
test.x <- data.frame(x1=factor(c(1)), x2=factor(c(1)))