我是神经网络的新手。 我已经通过了TensorFlow mninst ML初学者
使用了tensorflow基本的mnist教程
并尝试使用外部图像进行预测
我更新了tensorflow提供的mnist示例
On top of that i have added few things :
1. Saving trained models locally
2. loading the saved models.
3. preprocessing the image into 28 * 28.
i have attached the image for reference
1. while training the models, save it locally. So i can reuse it at any point of time.
2. once after training, loading the models.
3. creating an external image via gimp which contains any one values ranging from [0 - 9]
4. using opencv to convert the image into 28 * 28 image and reversing the bit as well.
5. Then trying to predict.
我能够训练模型并妥善保存。
我得到了不正确的预测。
在
下面找到我的代码TrainSimple.py
# Load MNIST Data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
from random import randint
from scipy import misc
# Start TensorFlow InteractiveSession
import tensorflow as tf
sess = tf.InteractiveSession()
# Placeholders
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
# Variables
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
sess.run(tf.initialize_all_variables())
# Predicted Class and Cost Function
y = tf.nn.softmax(tf.matmul(x,W) + b)
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
saver = tf.train.Saver() # defaults to saving all variables
# GradientDescentOptimizer
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
# Train the Model
for i in range(40000):
if (i + 1) == 40000 :
saver.save(sess, "/Users/xxxx/Desktop/TensorFlow/"+"/model.ckpt", global_step=i)
batch = mnist.train.next_batch(50)
train_step.run(feed_dict={x: batch[0], y_: batch[1]})
# Evaluate the Model
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
loadImageAndPredict.py
from random import randint
from scipy import misc
import numpy as np
import cv2
def preProcess(invert_file):
print "preprocessing the images" + invert_file
image=cv2.imread(invert_file,0)
ret,image_thresh = cv2.threshold(image,127,255,cv2.THRESH_BINARY)
l,b=image.shape
fr=0
lr=0
fc=0
lc=0
i=0
while len(set(image_thresh[i,]))==1:
i+=1
fr=i
i=0
while len(set(image_thresh[-1+i,]))==1:
i-=1
lr=i+l
j=0
while len(set(image_thresh[0:,j]))==1:
j+=1
fc=j
j=0
while len(set(image_thresh[0:,-1+j]))==1:
j-=1
lc=j+b
image_crop=image_thresh[fr:lr,fc:lc]
image_padded= cv2.copyMakeBorder(image_crop,5,5,5,5,cv2.BORDER_CONSTANT,value=255)
image_resized = cv2.resize(image_padded, (28, 28))
image_resized = (255-image_resized)
cv2.imwrite(invert_file, image_resized)
import tensorflow as tf
sess = tf.InteractiveSession()
# Placeholders
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
# # Variables
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
# Predicted Class and Cost Function
y = tf.nn.softmax(tf.matmul(x,W) + b)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
saver = tf.train.Saver() # defaults to saving all variables - in this case w and b
# Train the Model
# GradientDescentOptimizer
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
flag_1 = 0
# create an an array where we can store 1 picture
images = np.zeros((1,784))
# and the correct values
correct_vals = np.zeros((1,10))
preProcess("4_white.png")
gray = cv2.imread("4_white.png", 0)
flatten = gray.flatten() / 255.0
"""
we need to store the flatten image and generate
the correct_vals array
correct_val for a digit (9) would be
[0,0,0,0,0,0,0,0,0,1]
"""
images[0] = flatten
# print images[0]
print len(images[0])
sess.run(tf.initialize_all_variables())
ckpt = tf.train.get_checkpoint_state("/Users/xxxx/Desktop/TensorFlow")
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path)
my_classification = sess.run(tf.argmax(y, 1), feed_dict={x: [images[0]]})
print 'Neural Network predicted', my_classification[0], "for your digit"
我不确定我做了什么错误。
认为简单模型可能不起作用我已使用此卷积代码进行预测。
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/models/image/mnist/convolutional.py
即便如此也无法正确预测:(