我正在尝试将+1加入到numpy数组的某些特定单元格中,但如果没有慢速循环,我找不到任何方法:
coords = np.array([[1,2],[1,2],[1,2],[0,0]])
X = np.zeros((3,3))
for i,j in coords:
X[i,j] +=1
导致:
X = [[ 1. 0. 0.]
[ 0. 0. 3.]
[ 0. 0. 0.]]
X[coords[:,0],coords[:,1] += 1
返回
X = [[ 1. 0. 0.]
[ 0. 0. 1.]
[ 0. 0. 0.]]
任何帮助?
答案 0 :(得分:4)
numpy.at完全符合这些情况。
In [1]: np.add.at(X,tuple(coords.T),1)
In [2]: X
Out[2]:
array([[ 1., 0., 0.],
[ 0., 0., 3.],
[ 0., 0., 0.]])
答案 1 :(得分:3)
您可以使用np.bincount
,就像这样 -
out_shape = (3,3) # Input param
# Get linear indices corresponding to coords with the output array shape.
# These form the IDs for accumulation in the next step.
ids = np.ravel_multi_index(coords.T,out_shape)
# Use bincount to get 1-weighted accumulations. Since bincount assumes 1D
# array, we need to do reshaping before and after for desired output.
out = np.bincount(ids,minlength=np.prod(out_shape)).reshape(out_shape)
如果您尝试分配1s
以外的值,则可以使用其他输入参数将权重输入np.bincount
。
示例运行 -
In [2]: coords
Out[2]:
array([[1, 2],
[1, 2],
[1, 2],
[0, 0]])
In [3]: out_shape = (3,3) # Input param
...: ids = np.ravel_multi_index(coords.T,out_shape)
...: out = np.bincount(ids,minlength=np.prod(out_shape)).reshape(out_shape)
...:
In [4]: out
Out[4]:
array([[1, 0, 0],
[0, 0, 3],
[0, 0, 0]], dtype=int64)
答案 2 :(得分:2)
另一个选项是np.histogramdd
:
bins = [np.arange(d + 1) for d in X.shape]
out, edges = np.histogramdd(coords, bins)
print(out)
# [[ 1. 0. 0.]
# [ 0. 0. 3.]
# [ 0. 0. 0.]]