我正在使用张量流在MNIST数据库上运行卷积神经网络。但我收到以下错误。
tensorflow.python.framework.errors.InvalidArgumentError:您必须使用dtype float为占位符张量'x'提供值 [[Node:x = Placeholderdtype = DT_FLOAT,shape = [],_ device =“/ job:localhost / replica:0 / task:0 / cpu:0”]]
x = tf.placeholder(tf.float32,[None,784],name ='x')#mnist形状的数据图像28 * 28 = 784
我以为我正确地使用feed_dict更新x的值,但是它说我没有更新占位符x的值。
此外,我的代码中还有其他逻辑漏洞吗?
非常感谢任何帮助。感谢。
import tensorflow as tf
import numpy
from tensorflow.examples.tutorials.mnist import input_data
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# Parameters
learning_rate = 0.01
training_epochs = 10
batch_size = 100
display_step = 1
# tf Graph Input
#x = tf.placeholder(tf.float32, [50, 784], name='x') # mnist data image of shape 28*28=784
#y = tf.placeholder(tf.float32, [50, 10], name='y') # 0-9 digits recognition => 10 classes
# Set model weights
W = tf.Variable(tf.zeros([784, 10]), name="weights")
b = tf.Variable(tf.zeros([10]), name="bias")
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
# Initializing the variables
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
# Training cycle
for i in range(1000):
print i
batch_xs, batch_ys = mnist.train.next_batch(50)
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
y_conv=tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(y_conv), reduction_indices=[1]))
sess.run(
[cross_entropy, y_conv],
feed_dict={x: batch_xs, y: batch_ys})
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y,1))
print correct_prediction.eval()
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
答案 0 :(得分:2)
为什么要尝试创建占位符变量?您应该能够直接使用由<ul>
<li><img src="http://images.clipartpanda.com/smiley-face-clip-art-niXoRMbiB.png"></li>
<li>Second item in list</li>
<li>Third item in list</li>
</ul>
生成的输出,前提是您可以在模型内部移动mnist.train.next_batch(50)
的计算和精度。
correct_prediction
答案 1 :(得分:2)
您因为尝试在import org.apache.avro.Schema;
import org.apache.avro.generic.GenericDatumReader;
import org.apache.avro.generic.GenericRecord;
import org.apache.avro.io.DecoderFactory;
import org.apache.avro.io.EncoderFactory;
import org.apache.avro.reflect.ReflectData;
import org.apache.avro.reflect.ReflectDatumWriter;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.joda.time.DateTime;
import org.junit.Test;
import java.io.ByteArrayOutputStream;
import java.util.Collections;
import java.util.Properties;
/**
* This is a test...
*/
public class KafkaAvroProducerTest {
private static final Logger log = LogManager.getLogger(KafkaAvroProducerTest.class);
@Test
public void produceAndSendAndEvent() throws Exception {
Properties props = new Properties();
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
org.apache.kafka.common.serialization.StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
io.confluent.kafka.serializers.KafkaAvroSerializer.class);
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put("schema.registry.url", "http://localhost:8081");
KafkaProducer producer = new KafkaProducer(props);
log.debug("starting producer");
String topic = "topic11";
Schema schema = ReflectData.get().getSchema(Purchase.class);
Purchase purchase = new Purchase("appStore", 9.99d, DateTime.now().getMillis(), "BRXh2lf9wm");
ReflectDatumWriter<Purchase> reflectDatumWriter = new ReflectDatumWriter<>(schema);
GenericDatumReader<Object> genericRecordReader = new GenericDatumReader<>(schema);
ByteArrayOutputStream bytes = new ByteArrayOutputStream();
reflectDatumWriter.write(purchase, EncoderFactory.get().directBinaryEncoder(bytes, null));
GenericRecord avroRecord = (GenericRecord) genericRecordReader.read(null, DecoderFactory.get().binaryDecoder(bytes.toByteArray(), null));
ProducerRecord record = new ProducerRecord<Object, Object>(topic, avroRecord);
Thread producerThread = new Thread(() -> {
try {
while(true) {
log.debug("send a message {}", record);
producer.send(record);
Thread.sleep(2000);
}
}catch(Exception ex) {
log.error("error", ex);
}
});
producerThread.start();
props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("group.id", "testGroup");
props.put("auto.commit.enable", "false");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "io.confluent.kafka.serializers.KafkaAvroDeserializer");
props.put("schema.registry.url", "http://localhost:8081");
org.apache.kafka.clients.consumer.KafkaConsumer<String, GenericRecord> kafkaConsumer = new KafkaConsumer(props);
kafkaConsumer.subscribe(Collections.singletonList(topic));
Thread consumerThread = new Thread(() -> {
try {
while(true) {
try {
ConsumerRecords<String, GenericRecord> records = kafkaConsumer.poll(1000);
for (ConsumerRecord<String, GenericRecord> record1 : records) {//
log.debug("read - {}", record1.value().getClass());
}
}catch(Exception ex) {
log.error("error", ex);
}
}
}catch(Exception ex) {
log.error("error", ex);
}
});
consumerThread.start();
System.in.read();
}
}
上运行eval()
而收到该错误。张量需要批量输入(x和y)才能进行评估。您可以通过将其更改为:
correct_prediction
但正如Benoit Steiner所说,你可以轻松地将它拉进模型中。
更一般地说,你在这里没有进行任何优化,但也许你还没有完成任务。就目前而言,它只打印出一段时间的错误预测。 :)
答案 2 :(得分:0)
首先,您的x和y被注释掉,如果您的实际代码中存在此问题,则很可能是问题。
CELERYBEAT_SCHEDULE = {
'daily-mailer': {
'task': 'tasks.views.mail_automated',
'schedule': crontab(day='*'),
'args': (),
}
{
相当于correct_prediction.eval()
(或在您的情况下为tf.session.run(correct_prediction)
),因此需要相同的语法*。因此,为了运行它需要sess.run()
,但是请注意,这通常是RAM密集型的,并且可能导致系统挂起。由于使用ram,将精度函数拉入模型可能是一个好主意。
我没有看到使用你的交叉熵的优化功能,但我从来没有尝试过不使用它,所以如果它有效,就不要修复它。但如果它最终导致错误你可能想尝试:
correct_prediction.eval(feed_dict={x: batch_xs, y: batch_ys})
并替换&#39; optimizer = optimizer = tf.train.AdamOptimizer().minimize(cross_entropy)
&#39;在
cross_entropy
使用&#39; sess.run([cross_entropy, y_conv],feed_dict={x: batch_xs, y: batch_ys})
&#39;
https://pythonprogramming.net/tensorflow-neural-network-session-machine-learning-tutorial/
检查脚本的准确度评估部分。