我有一个大型的csv文件,其中包含大量的脏数据,我想通过消除所有非绝对必要的值来清理它。
Here是我正在谈论的文件。
它有组件:
Website
, Title
, Start Date
, Employer
的 , Location
, lat
, lon
, Country
< strong>, Skills11
, Jobs
但我想删除所有,但是:
Employer
, Location
, Country
, Jobs
是否有适合此任务的特定工具?
或许某人有一个方便的Python脚本可以完成工作?
答案 0 :(得分:4)
您可以轻松地将python写入临时文件,然后替换原始文件。
import csv
from operator import itemgetter
from tempfile import NamedTemporaryFile
from shutil import move
with open("edsa_data.csv") as f, NamedTemporaryFile(dir=".", delete=False) as tmp:
# itertools.imap python2
csv.writer(tmp).writerows(map(itemgetter(3, 5, 7, 9), csv.reader(f)))
move(tmp.name, "edsa_data.csv")
更通用的方法:
import csv
from operator import itemgetter
from tempfile import NamedTemporaryFile
from shutil import move
def keep_columns(csv_f, keep_cols, **kwargs):
with open(csv_f) as f, NamedTemporaryFile("w", dir=".", delete=False) as tmp:
csv.writer(tmp, **kwargs).writerows(itemgetter(*keep_cols)(row)
for row in csv.reader(f, **kwargs))
move(tmp.name, csv_f)
keep_columns("edsa_data.csv", (3, 4, 7, 9))
对于kwargs,您可以传递 sep =“,” skipinitialspace = True 等。
答案 1 :(得分:2)
为了便于维护,我使用DictReader
/ DictWriter
对。
import csv
import sys
with open(sys.argv[1], 'r') as csv_infile:
with open(sys.argv[2], 'w') as csv_outfile:
csv_in = csv.DictReader(csv_infile)
csv_out = csv.DictWriter(
csv_outfile,
['Employer','Location','Country','Jobs'],
extrasaction='ignore')
csv_out.writeheader()
csv_out.writerows(csv_in)