考虑Series
obj
:
In [50]: obj = Series(np.arange(6,10), index = ['a', 'b', 'c', 'd'])
In [51]: obj
Out[51]:
a 6
b 7
c 8
d 9
dtype: int64
我想分一杯obj
,我可以通过以下两种方式做到这一点:
In [52]: obj[1:3]
Out[52]:
b 7
c 8
dtype: int64
In [53]: obj['b' : 'c']
Out[53]:
b 7
c 8
dtype: int64
现在考虑DataFrame
param_estimates_good
:
In [54]: param_estimates_good
Out[54]:
a b sigma a_se b_se sigma_se success
1968 0.648508 1.803889 0.498017 0.784340 0.082366 0.529649 1
1972 0.539485 1.733304 0.451311 1.084170 0.174030 0.677134 1
1973 1.205704 2.054114 1.465606 0.095780 0.052851 0.090562 1
1974 1.398968 2.105287 2.029865 0.451929 0.056154 0.428696 1
1975 1.570900 1.877486 2.016978 0.186177 0.052413 0.183577 1
1976 0.688932 1.651232 0.874860 0.065038 0.099080 0.055247 1
1977 0.816918 1.949563 0.691899 0.516742 0.083973 0.385799 1
1980 0.730454 2.569974 2.297921 0.619403 0.157950 0.439383 1
1986 1.053362 1.770256 1.115229 0.235353 0.063867 0.202970 1
1993 2.531327 1.235418 2.005588 0.107785 0.011513 0.060647 1
1994 -0.759318 2.556910 0.175695 0.052099 0.078433 0.044315 1
1998 1.007787 1.548161 0.911332 2.538235 0.040285 2.001148 1
2000 -0.693261 1.518839 -0.290453 3.763934 1.329302 0.868444 1
2001 0.662391 0.650003 0.854752 0.550188 0.547999 0.376354 1
2002 0.652630 0.424864 0.524909 0.413478 0.334703 0.251172 1
2004 -0.169553 1.290054 -0.040504 0.279700 0.093937 0.115120 1
2005 0.146209 1.610219 -0.233461 0.171832 0.083844 0.123676 1
2007 -0.301397 0.822584 0.309423 1.119639 0.860818 0.377673 1
2008 1.334283 0.065856 1.704950 0.462811 0.489639 0.427041 1
2009 2.082782 -0.727128 1.072343 0.464726 0.093574 0.472603 1
2010 2.309353 -1.202509 0.906165 0.037950 0.080356 0.031981 1
2013 3.490101 -2.033734 1.468027 0.251317 0.030869 0.259732 1
2014 1.820431 -1.961015 -0.050831 0.262710 0.176057 0.266525 1
2016 1.818855 -0.580492 0.312369 0.450659 0.065661 0.474896 1
我将其中的一部分形成Series
g
:
In [55]: g = param_estimates_good['a']
In [56]: g
Out[56]:
1968 0.648508
1972 0.539485
1973 1.205704
1974 1.398968
1975 1.570900
1976 0.688932
1977 0.816918
1980 0.730454
1986 1.053362
1993 2.531327
1994 -0.759318
1998 1.007787
2000 -0.693261
2001 0.662391
2002 0.652630
2004 -0.169553
2005 0.146209
2007 -0.301397
2008 1.334283
2009 2.082782
2010 2.309353
2013 3.490101
2014 1.820431
2016 1.818855
Name: a, dtype: float64
Index
的{{1}}是内注...
g
...所以我尝试以In [57]: g.index
Out[57]:
Int64Index([1968, 1972, 1973, 1974, 1975, 1976, 1977, 1980, 1986, 1993, 1994,
1998, 2000, 2001, 2002, 2004, 2005, 2007, 2008, 2009, 2010, 2013,
2014, 2016],
dtype='int64')
的方式切片g
:
obj
为什么后一种方法返回空In [58]: g[0:7]
Out[58]:
1968 0.648508
1972 0.539485
1973 1.205704
1974 1.398968
1975 1.570900
1976 0.688932
1977 0.816918
Name: a, dtype: float64
In [59]: g[1968 : 1977]
Out[59]: Series([], Name: a, dtype: float64)
?
答案 0 :(得分:3)
我认为它想要从位置1968
到1977
找到行,因为它按位置选择行 - Slicing ranges [] in docs
:
使用Series,语法与ndarray完全一样,返回值的一部分和相应的标签
与Selection by position in docs
的iloc
相同。
print g.iloc[1968 : 1977]
Series([], Name: a, dtype: float64)
loc
Selection By Label in docs
完美无缺{{3}}:
print g.loc[1968 : 1977]
1968 0.648508
1972 0.539485
1973 1.205704
1974 1.398968
1975 1.570900
1976 0.688932
1977 0.816918
Name: a, dtype: float64
答案 1 :(得分:0)
你得到一个空系列,因为在g [1968:1977]中使用切片算子时,这些被视为位置(行索引从0到(N-1)),其中N是大小/长度系列)你似乎有24行g,所以当你要求1968年和1977年之间的所有元素时,你什么也得不到(你的最后一个位置是23)。
您希望使用g.index [1968:1977]中的g.index标签,然后获得标签1968和1977(包括)之间的所有元素。