I have a dataframe with the following structure - Start, End and Height.
Some properties of the dataframe:
I'd like to group the dataframe in a way that heights will be grouped in buckets of 5 longs i.e. the buckets are 0, 1-5, 6-10, 11-15 and >15.
See code example below where what I'm looking for is the implemetation of group_by_bucket function.
I tried looking at other questions but couldn't get exact answer to what I was looking for.
Thanks in advance!
>>> d = pd.DataFrame([[1,3,5], [4,10,7], [11,17,6], [18,26, 12], [27,30, 15], [31,40,6], [41, 42, 7]], columns=['start','end', 'height'])
>>> d
start end height
0 1 3 8
1 4 10 7
2 11 17 6
3 18 26 12
4 27 30 15
5 31 40 6
6 41 42 7
>>> d_gb = group_by_bucket(d)
>>> d_gb
start end height_grouped
0 1 17 6_10
1 18 30 11_15
2 31 42 6_10
答案 0 :(得分:6)
A way to do that :
df = pd.DataFrame([[1,3,10], [4,10,7], [11,17,6], [18,26, 12],
[27,30, 15], [31,40,6], [41, 42, 6]], columns=['start','end', 'height'])
Use cut
to make groups :
df['groups']=pd.cut(df.height,[-1,0,5,10,15,1000])
Find break points :
df['categories']=(df.groups!=df.groups.shift()).cumsum()
Then df
is :
"""
start end height groups categories
0 1 3 10 (5, 10] 0
1 4 10 7 (5, 10] 0
2 11 17 6 (5, 10] 0
3 18 26 12 (10, 15] 1
4 27 30 15 (10, 15] 1
5 31 40 6 (5, 10] 2
6 41 42 6 (5, 10] 2
"""
Define interesting data :
f = {'start':['first'],'end':['last'], 'groups':['first']}
And use the groupby.agg
function :
df.groupby('categories').agg(f)
"""
groups end start
first last first
categories
0 (5, 10] 17 1
1 (10, 15] 30 18
2 (5, 10] 42 31
"""
答案 1 :(得分:4)
You can use cut
with groupby
by cut
and Series
with cumsum
for generating groups and aggregate by agg
, first
and last
:
bins = [-1,0,1,5,10,15,100]
print bins
[-1, 0, 1, 5, 10, 15, 100]
cut_ser = pd.cut(d['height'], bins=bins)
print cut_ser
0 (5, 10]
1 (5, 10]
2 (5, 10]
3 (10, 15]
4 (10, 15]
5 (5, 10]
6 (5, 10]
Name: height, dtype: category
Categories (6, object): [(-1, 0] < (0, 1] < (1, 5] < (5, 10] < (10, 15] < (15, 100]]
print (cut_ser.shift() != cut_ser).cumsum()
0 0
1 0
2 0
3 1
4 1
5 2
6 2
Name: height, dtype: int32
print d.groupby([(cut_ser.shift() != cut_ser).cumsum(), cut_ser])
.agg({'start' : 'first','end' : 'last'})
.reset_index(level=1).reset_index(drop=True)
.rename(columns={'height':'height_grouped'})
height_grouped start end
0 (5, 10] 1 17
1 (10, 15] 18 30
2 (5, 10] 31 42
EDIT:
Timings:
In [307]: %timeit a(df)
100 loops, best of 3: 5.45 ms per loop
In [308]: %timeit b(d)
The slowest run took 4.45 times longer than the fastest. This could mean that an intermediate result is being cached
100 loops, best of 3: 3.28 ms per loop
Code:
d = pd.DataFrame([[1,3,5], [4,10,7], [11,17,6], [18,26, 12], [27,30, 15], [31,40,6], [41, 42, 7]], columns=['start','end', 'height'])
print d
df = d.copy()
def a(df):
df['groups']=pd.cut(df.height,[-1,0,5,10,15,1000])
df['categories']=(df.groups!=df.groups.shift()).cumsum()
f = {'start':['first'],'end':['last'], 'groups':['first']}
return df.groupby('categories').agg(f)
def b(d):
bins = [-1,0,1,5,10,15,100]
cut_ser = pd.cut(d['height'], bins=bins)
return d.groupby([(cut_ser.shift() != cut_ser).cumsum(), cut_ser]).agg({'start' : 'first','end' : 'last'}).reset_index(level=1).reset_index(drop=True).rename(columns={'height':'height_grouped'})
print a(df)
print b(d)