我是pyspark的新手,想在我的Ubuntu 12.04机器上使用Ipython笔记本使用pyspark。以下是pyspark和Ipython笔记本的配置。
sparkuser@Ideapad:~$ echo $JAVA_HOME
/usr/lib/jvm/java-8-oracle
# Path for Spark
sparkuser@Ideapad:~$ ls /home/sparkuser/spark/
bin CHANGES.txt data examples LICENSE NOTICE R RELEASE scala-2.11.6.deb
build conf ec2 lib licenses python README.md sbin spark-1.5.2-bin-hadoop2.6.tgz
我安装了Anaconda2 4.0.0和anaconda路径:
sparkuser@Ideapad:~$ ls anaconda2/
bin conda-meta envs etc Examples imports include lib LICENSE.txt mkspecs pkgs plugins share ssl tests
为IPython创建PySpark配置文件。
ipython profile create pyspark
sparkuser@Ideapad:~$ cat .bashrc
export SPARK_HOME="$HOME/spark"
export PYSPARK_SUBMIT_ARGS="--master local[2]"
# added by Anaconda2 4.0.0 installer
export PATH="/home/sparkuser/anaconda2/bin:$PATH"
创建一个名为〜/ .ipython / profile_pyspark / startup / 00-pyspark-setup.py的文件:
sparkuser@Ideapad:~$ cat .ipython/profile_pyspark/startup/00-pyspark-setup.py
import os
import sys
spark_home = os.environ.get('SPARK_HOME', None)
sys.path.insert(0, spark_home + "/python")
sys.path.insert(0, os.path.join(spark_home, 'python/lib/py4j-0.8.2.1-src.zip'))
filename = os.path.join(spark_home, 'python/pyspark/shell.py')
exec(compile(open(filename, "rb").read(), filename, 'exec'))
spark_release_file = spark_home + "/RELEASE"
if os.path.exists(spark_release_file) and "Spark 1.5.2" in open(spark_release_file).read():
pyspark_submit_args = os.environ.get("PYSPARK_SUBMIT_ARGS", "")
if not "pyspark-shell" in pyspark_submit_args:
pyspark_submit_args += " pyspark-shell"
os.environ["PYSPARK_SUBMIT_ARGS"] = pyspark_submit_args
登录pyspark终端:
sparkuser@Ideapad:~$ ~/spark/bin/pyspark
Python 2.7.11 |Anaconda 4.0.0 (64-bit)| (default, Dec 6 2015, 18:08:32)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
Anaconda is brought to you by Continuum Analytics.
Please check out: http://continuum.io/thanks and https://anaconda.org
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
16/04/22 21:06:55 INFO SparkContext: Running Spark version 1.5.2
16/04/22 21:07:27 INFO BlockManagerMaster: Registered BlockManager
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/\_,_/_/ /_/\_\ version 1.5.2
/_/
Using Python version 2.7.11 (default, Dec 6 2015 18:08:32)
SparkContext available as sc, HiveContext available as sqlContext.
>>> sc
<pyspark.context.SparkContext object at 0x7facb75b50d0>
>>>
当我运行以下命令时,会打开juypter浏览器
sparkuser@Ideapad:~$ ipython notebook --profile=pyspark
[TerminalIPythonApp] WARNING | Subcommand `ipython notebook` is deprecated and will be removed in future versions.
[TerminalIPythonApp] WARNING | You likely want to use `jupyter notebook`... continue in 5 sec. Press Ctrl-C to quit now.
[W 21:32:08.070 NotebookApp] Unrecognized alias: '--profile=pyspark', it will probably have no effect.
[I 21:32:08.111 NotebookApp] Serving notebooks from local directory: /home/sparkuser
[I 21:32:08.111 NotebookApp] 0 active kernels
[I 21:32:08.111 NotebookApp] The Jupyter Notebook is running at: http://localhost:8888/
[I 21:32:08.111 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
Created new window in existing browser session.
在浏览器中,如果我输入以下命令,则会抛出NameError。
In [ ]: print sc
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-2-ee8101b8fe58> in <module>()
----> 1 print sc
NameError: name 'sc' is not defined
当我在pyspark终端运行上面的命令时,它输出所需的输出,但是当我在jupyter中运行相同的命令时,它会抛出上述错误。
以上是pyspark和Ipython的配置设置。 如何使用jupyter配置pyspark?
答案 0 :(得分:6)
以下是一种解决方法,我建议您在不依赖pyspark
的情况下尝试为您加载上下文: -
从
安装findspark python包pip install findspark
如果您使用Anaconda安装了Jupyter Notebook,请改用Anaconda Prompt或Terminal:
$CONDA_PYTHON_EXE -m pip install findspark
然后只需导入并初始化sparkcontext: -
import findspark
findspark.init()
import os
import pyspark # import pyspark only after findspark
print(sc)
print(spark)
答案 1 :(得分:0)
您好需要在终端尝试使用pyspark内核:
ID1 ZZZ AAA 23/11/1987
ID2 ZZZ AAA 23/11/1987
然后复制以下文字:
mkdir -p ~/.ipython/kernels/pyspark
nano ~/.ipython/kernels/pyspark/kernel.json
并保存(ctr + X,y)
你现在应该在你的jupyter内核中有“pyspark”。
现在你的笔记本中已存在sc(尝试在单元格中调用sc),否则请尝试运行以下行:
{ 'display_name': 'pySpark (Spark 1.6.1)',
'language': 'python',
'argv': [
'/usr/bin/python', // Your python Path
'-m', 'IPython.kernel',
'--profile=pyspark',
'-f',
'{connection_file}'
] }
你现在应该运行你的sc
答案 2 :(得分:0)
简单的建议是不要使pyspark安装复杂化。
版本&gt; 2.2,你可以做一个简单的pip install pyspark
来安装pyspark包
此外,如果您还想安装jupyter,请为jupyter执行另一个pip安装。
pip install pyspark
pip install jupyter
或者,如果您想为spark使用其他版本或特定发行版,则较早的3 minute
方法将为:
https://blog.sicara.com/get-started-pyspark-jupyter-guide-tutorial-ae2fe84f594f