我是R的新手。我每天观察温度和PP 12年(6574行,6col,一些NA)。例如,我想计算一下2001年1月1日到10日的平均值,然后是11-20,最后是21到31,依此类推,直到12月份每个月,直到我之前提到的那一年。
但我也有问题,因为二月有时会有28或29天(闰年)。
这就是我打开文件的方式是CSV,read.table
# READ CSV
setwd ("C:\\Users\\GVASQUEZ\\Documents\\ESTUDIO_PAMPAS\\R_sheet")
huancavelica<-read.table("huancavelica.csv",header = TRUE, sep = ",",
dec = ".", fileEncoding = "latin1", nrows = 6574 )
这是我的CSV文件的输出
Año Mes Dia PT101 TM102 TM103
1 1998 1 1 6.0 15.6 3.4
2 1998 1 2 8.0 14.4 3.2
3 1998 1 3 8.6 13.8 4.4
4 1998 1 4 5.6 14.6 4.6
5 1998 1 5 0.4 17.4 3.6
6 1998 1 6 3.4 17.4 4.4
7 1998 1 7 9.2 14.6 3.2
8 1998 1 8 2.2 16.8 2.8
9 1998 1 9 8.6 18.4 4.4
10 1998 1 10 6.2 15.0 3.6
. . . . . . .
答案 0 :(得分:1)
我们可以尝试
library(data.table)
setDT(df1)[, Grp := (Dia - 1)%/%10+1, by = .(Ano, Mes)
][Grp>3, Grp := 3][,lapply(.SD, mean, na.rm=TRUE), by = .(Ano, Mes, Grp)]
答案 1 :(得分:1)
使用数据设置,你有一个相当尝试和真实的方法应该工作:
# add 0 in front of single digit month variable to account for 1 and 10 sorting
huancavelica$MesChar <- ifelse(nchar(huancavelica$Mes)==1,
paste0("0",huancavelica$Mes), as.character(huancavelica$Mes))
# get time of month ID
huancavelica$timeMonth <- ifelse(huancavelica$Dia < 11, 1,
ifelse(huancavelica$Dia > 20, 3, 2)
# get final ID
huancavelica$ID <- paste(huancavelica$Año, huancavelica$MesChar, huancavelica$timeMonth, sep=".")
# average stat
huancavelica$myStat <- ave(huancavelica$PT101, huancavelica$ID, FUN=mean, na.rm=T)
答案 2 :(得分:0)
它增加了一点复杂性,但你可以将每个月减少到三分之一并获得每三分之一的平均值。例如:
library(dplyr)
library(lubridate)
# Fake data
set.seed(10)
df = data.frame(date=seq(as.Date("2015-01-01"), as.Date("2015-12-31"), by="1 day"),
value=rnorm(365))
# Cut months into thirds
df = df %>%
mutate(mon_yr = paste0(month(date, label=TRUE, abbr=TRUE) , " ", year(date))) %>%
group_by(mon_yr) %>%
mutate(cutMonth = cut(day(date),
breaks=c(0, round(1/3*n()), round(2/3*n()), n()),
labels=c("1st third","2nd third","3rd third")),
cutMonth = paste0(mon_yr, ", ", cutMonth)) %>%
ungroup %>%
mutate(cutMonth = factor(cutMonth, levels=unique(cutMonth)))
date value cutMonth 1 2015-01-01 0.01874617 Jan 2015, 1st third 2 2015-01-02 -0.18425254 Jan 2015, 1st third 3 2015-01-03 -1.37133055 Jan 2015, 1st third ... 363 2015-12-29 -1.3996571 Dec 2015, 3rd third 364 2015-12-30 -1.2877952 Dec 2015, 3rd third 365 2015-12-31 -0.9684155 Dec 2015, 3rd third
# Summarise to get average value for each 1/3 of a month
df.summary = df %>%
group_by(cutMonth) %>%
summarise(average.value = mean(value))
cutMonth average.value 1 Jan 2015, 1st third -0.49065685 2 Jan 2015, 2nd third 0.28178222 3 Jan 2015, 3rd third -1.03870698 4 Feb 2015, 1st third -0.45700203 5 Feb 2015, 2nd third -0.07577199 6 Feb 2015, 3rd third 0.33860882 7 Mar 2015, 1st third 0.12067388 ...