我认为函数TfidfVectorizer无法正确计算IDF因子。 例如,从tf-idf feature weights using sklearn.feature_extraction.text.TfidfVectorizer复制代码:
from sklearn.feature_extraction.text import TfidfVectorizer
corpus = ["This is very strange",
"This is very nice"]
vectorizer = TfidfVectorizer(
use_idf=True, # utiliza o idf como peso, fazendo tf*idf
norm=None, # normaliza os vetores
smooth_idf=False, #soma 1 ao N e ao ni => idf = ln(N+1 / ni+1)
sublinear_tf=False, #tf = 1+ln(tf)
binary=False,
min_df=1, max_df=1.0, max_features=None,
strip_accents='unicode', # retira os acentos
ngram_range=(1,1), preprocessor=None, stop_words=None, tokenizer=None, vocabulary=None
)
X = vectorizer.fit_transform(corpus)
idf = vectorizer.idf_
print dict(zip(vectorizer.get_feature_names(), idf))
输出是:
{u'is': 1.0,
u'nice': 1.6931471805599454,
u'strange': 1.6931471805599454,
u'this': 1.0,
u'very': 1.0}`
但应该是:
{u'is': 0.0,
u'nice': 0.6931471805599454,
u'strange': 0.6931471805599454,
u'this': 0.0,
u'very': 0.0}
不是吗?我做错了什么?
根据http://www.tfidf.com/,IDF的计算是:
IDF(t) = log_e(Total number of documents / Number of documents with term t in it)
因此,由于术语'this','is'和'very'出现在两个句子中,因此IDF = log_e(2/2)= 0.
“奇怪”和“好”这两个词只出现在两个文件中的一个中,所以log_e(2/1)= 0,69314。
答案 0 :(得分:5)
在sklearn的暗示中你可能没有发现过两件事:
TfidfTransformer
将smooth_idf=True
作为默认参数所以它正在使用:
idf = log( 1 + samples/documents) + 1
这是源头:
编辑:
您可以像这样继承标准TfidfVectorizer
类:
import scipy.sparse as sp
import numpy as np
from sklearn.feature_extraction.text import (TfidfVectorizer,
_document_frequency)
class PriscillasTfidfVectorizer(TfidfVectorizer):
def fit(self, X, y=None):
"""Learn the idf vector (global term weights)
Parameters
----------
X : sparse matrix, [n_samples, n_features]
a matrix of term/token counts
"""
if not sp.issparse(X):
X = sp.csc_matrix(X)
if self.use_idf:
n_samples, n_features = X.shape
df = _document_frequency(X)
# perform idf smoothing if required
df += int(self.smooth_idf)
n_samples += int(self.smooth_idf)
# log+1 instead of log makes sure terms with zero idf don't get
# suppressed entirely.
####### + 1 is commented out ##########################
idf = np.log(float(n_samples) / df) #+ 1.0
#######################################################
self._idf_diag = sp.spdiags(idf,
diags=0, m=n_features, n=n_features)
return self
答案 1 :(得分:1)
他们在计算idf时使用的实际公式(当smooth_idf为True时)是
idf = log( (1 + samples)/(documents + 1)) + 1
它来自源代码,但我认为网络文档有点含糊不清。