我使用插入符号查找&比较多个模型的预测。我首先将我的数据划分为5个交叉验证折叠,然后在5个训练数据集中的每一个中使用10倍CV来选择最佳模型参数。
单个glmnet
模型的小型(n = 400)测试数据集上的示例代码:
# Load data & factor admit variable.
> mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv")
> mydata$admit <- as.factor(mydata$admit)
# Create levels yes/no to make sure the the classprobs get a correct name.
levels(mydata$admit) = c("yes", "no")
# Partition data into 5 folds.
> set.seed(123)
> folds <- createFolds(mydata$admit, k=5)
# Train elastic net logistic regression via 10-fold CV on each of 5 training folds using index argument.
> set.seed(123)
> train_control <- trainControl( method="cv",
number=10,
index=folds,
classProbs = TRUE,
savePredictions = TRUE)
> glmnetGrid <- expand.grid(alpha=c(0, .5, 1), lambda=c(.1, 1, 10))
model<- train(admit ~ .,
data=mydata,
trControl=train_control,
method="glmnet",
family="binomial",
tuneGrid=glmnetGrid,
metric="Accuracy",
preProcess=c("center","scale"))
> model
glmnet
400 samples
3 predictor
2 classes: 'yes', 'no'
Pre-processing: centered (3), scaled (3)
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 79, 80, 80, 81, 80
Resampling results across tuning parameters:
alpha lambda Accuracy Kappa Accuracy SD Kappa SD
0.0 0.1 0.6918972780 0.08970669720 0.016425551472 0.08416581606
0.0 1.0 0.6825007141 0.00000000000 0.001368477994 0.00000000000
0.0 10.0 0.6825007141 0.00000000000 0.001368477994 0.00000000000
0.5 0.1 0.6818893800 0.04127002380 0.008252409699 0.04052581228
0.5 1.0 0.6825007141 0.00000000000 0.001368477994 0.00000000000
0.5 10.0 0.6825007141 0.00000000000 0.001368477994 0.00000000000
1.0 0.1 0.6800085023 0.02149826881 0.005876570847 0.04807159045
1.0 1.0 0.6825007141 0.00000000000 0.001368477994 0.00000000000
1.0 10.0 0.6825007141 0.00000000000 0.001368477994 0.00000000000
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were alpha = 0 and lambda = 0.1.
> summary(model$pred)
pred obs rowIndex yes no alpha lambda Resample
yes:14192 yes:9828 Min. : 1.00 Min. :0.2650250 Min. :0.03333769 Min. :0.0 Min. : 0.1 Length:14400
no : 208 no :4572 1st Qu.:100.75 1st Qu.:0.6750000 1st Qu.:0.31250000 1st Qu.:0.0 1st Qu.: 0.1 Class :character
Median :200.50 Median :0.6835443 Median :0.31645570 Median :0.5 Median : 1.0 Mode :character
Mean :200.50 Mean :0.6840322 Mean :0.31596777 Mean :0.5 Mean : 3.7
3rd Qu.:300.25 3rd Qu.:0.6875000 3rd Qu.:0.32500000 3rd Qu.:1.0 3rd Qu.:10.0
Max. :400.00 Max. :0.9666623 Max. :0.73497501 Max. :1.0 Max. :10.0
问题:插入符号语法是否允许我为5个训练折叠分区中的每一个获得相应最佳拟合模型的5个测试折叠预测?
实际上,model$pred
返回了14,400个预测,并且是整个数据集的最佳拟合模型。我希望model$pred
为每个训练折叠的5个独立模型返回n = 5 x 80 = 400个预测值。
答案 0 :(得分:1)
你只需要设置savePredictions =“final”。这应该将输出限制为你需要的。