有没有办法将pandas数据帧拆分成多个受内存使用限制的数据帧?
答案 0 :(得分:1)
def split_dataframe(df, size):
# size of each row
row_size = df.memory_usage().sum() / len(df)
# maximum number of rows of each segment
row_limit = size // row_size
# number of segments
seg_num = (len(df) + row_limit - 1) // row_limit
# split df
segments = [df.iloc[i*row_limit : (i+1)*row_limit] for i in range(seg_num)]
return segments
答案 1 :(得分:0)
最简单的方法是,数据帧的列是一致的数据类型(即不是对象)。这是一个如何解决这个问题的例子。
import numpy as np
import pandas as pd
from __future__ import division
df = pd.DataFrame({'a': [1]*100, 'b': [1.1, 2] * 50, 'c': range(100)})
# calculate the number of bytes a row occupies
row_bytes = df.dtypes.apply(lambda x: x.itemsize).sum()
mem_limit = 1024
# get the maximum number of rows in a segment
max_rows = mem_limit / row_bytes
# get the number of dataframes after splitting
n_dfs = np.ceil(df.shape[0] / max_rows)
# get the indices of the dataframe segments
df_segments = np.array_split(df.index, n_dfs)
# create a list of dataframes that are below mem_limit
split_dfs = [df.loc[seg, :] for seg in df_segments]
split_dfs
此外,如果您可以按列而不是行进行拆分,则pandas可以使用方便的memory_usage
方法。