我有一个大的sep="|"
tsv,其地址字段包含一堆带有以下内容的值
...xxx|yyy|Level 1 2 xxx Street\(MYCompany)|...
最终为:
line1) ...xxx|yyy|Level 1 2 xxx Street\
line2) (MYCompany)|...
尝试运行quote = 2将非数字转换为带有Pandas的read_table中的字符串,但它仍然将反斜杠视为新行。忽略包含反斜杠转义到新行的字段中值的行的有效方法是否有办法忽略\
的新行?
理想情况下,它会准备数据文件,以便可以将其读入pandas中的数据框。
更新:在第3行显示5行破损。
1788768|1831171|208434489|2014-08-14 13:40:02|108|c||Desktop|coupon|49 XXX Ave|Australia|Victoria|3025|Melbourne
1788772|1831177|202234489|2014-08-14 13:41:37|108|c||iOS||u7 38-46 South Street|Australia|New South Wales|2116|Sydney
1788776|1831182|205234489|2014-08-14 13:42:41|108|c||Desktop||Level XXX Margaret Street\
(My Company)|Australia|New South Wales|2000|Sydney|Sydney
1788780|1831186|202634489|2014-08-14 13:43:46|108|c||Desktop||Po box ZZZ|Australia|New South Wales|2444|NSW Other|Port Macquarie
答案 0 :(得分:0)
我认为您可以首先使用sep尝试read_csv
,其中 NOT 值似乎正确:
import pandas as pd
import io
temp=u"""
49 XXX Ave|Australia
u7 38-46 South Street|Australia
XXX Margaret Street\
New South Wales|Australia
Po box ZZZ|Australia"""
#after testing replace io.StringIO(temp) to filename
df = pd.read_csv(io.StringIO(temp), sep="^", header=None)
print df
0
0 49 XXX Ave|Australia
1 u7 38-46 South Street|Australia
2 XXX Margaret StreetNew South Wales|Australia
3 Po box ZZZ|Australia
然后,您可以使用sep="|"
和to_csv
df.to_csv('myfile.csv', header=False, index=False)
print pd.read_csv('myfile.csv', sep="|", header=None)
0 1
0 49 XXX Ave Australia
1 u7 38-46 South Street Australia
2 XXX Margaret StreetNew South Wales Australia
3 Po box ZZZ Australia
创建新文件:
output
下一个解决方案,但没有创建新文件,而是写入变量io.StringIO
,然后read_csv
写入import pandas as pd
import io
temp=u"""
49 XXX Ave|Australia
u7 38-46 South Street|Australia
XXX Margaret Street\
New South Wales|Australia
Po box ZZZ|Australia"""
#after testing replace io.StringIO(temp) to filename
df = pd.read_csv(io.StringIO(temp), sep=";", header=None)
print df
0
0 49 XXX Ave|Australia
1 u7 38-46 South Street|Australia
2 XXX Margaret StreetNew South Wales|Australia
3 Po box ZZZ|Australia
output = df.to_csv(header=False, index=False)
print output
49 XXX Ave|Australia
u7 38-46 South Street|Australia
XXX Margaret StreetNew South Wales|Australia
Po box ZZZ|Australia
print pd.read_csv(io.StringIO(u""+output), sep="|", header=None)
0 1
0 49 XXX Ave Australia
1 u7 38-46 South Street Australia
2 XXX Margaret StreetNew South Wales Australia
3 Po box ZZZ Australia
:
14
如果我在您的数据中对其进行测试,则看起来1.和2.rows包含15
个字段,接下来有两个import pandas as pd
import io
temp=u"""1788768|1831171|208434489|2014-08-14 13:40:02|108|c||Desktop|coupon|49 XXX Ave|Australia|Victoria|3025|Melbourne
1788772|1831177|202234489|2014-08-14 13:41:37|108|c||iOS||u7 38-46 South Street|Australia|New South Wales|2116|Sydney
1788776|1831182|205234489|2014-08-14 13:42:41|108|c||Desktop||Level XXX Margaret Street\
(My Company)|Australia|New South Wales|2000|Sydney
1788780|1831186|202634489|2014-08-14 13:43:46|108|c||Desktop||Po box ZZZ|Australia|New South Wales|2444|NSW Other"""
#after testing replace io.StringIO(temp) to filename
df = pd.read_csv(io.StringIO(temp), sep=";", header=None)
print df
0
0 1788768|1831171|208434489|2014-08-14 13:40:02|...
1 1788772|1831177|202234489|2014-08-14 13:41:37|...
2 1788776|1831182|205234489|2014-08-14 13:42:41|...
3 1788780|1831186|202634489|2014-08-14 13:43:46|...
output = df.to_csv(header=False, index=False)
字段。
所以我从两行(3.和4)中删除了最后一项,也许这只是错字(我希望如此):
print pd.read_csv(io.StringIO(u""+output), sep="|", header=None)
0 1 2 3 4 5 6 7 \
0 1788768 1831171 208434489 2014-08-14 13:40:02 108 c NaN Desktop
1 1788772 1831177 202234489 2014-08-14 13:41:37 108 c NaN iOS
2 1788776 1831182 205234489 2014-08-14 13:42:41 108 c NaN Desktop
3 1788780 1831186 202634489 2014-08-14 13:43:46 108 c NaN Desktop
8 9 10 11 \
0 coupon 49 XXX Ave Australia Victoria
1 NaN u7 38-46 South Street Australia New South Wales
2 NaN Level XXX Margaret Street(My Company) Australia New South Wales
3 NaN Po box ZZZ Australia New South Wales
12 13
0 3025 Melbourne
1 2116 Sydney
2 2000 Sydney
3 2444 NSW Other
names=range(15)
但如果数据正确,请将参数print pd.read_csv(io.StringIO(u""+output), sep="|", names=range(15))
0 1 2 3 4 5 6 7 \
0 1788768 1831171 208434489 2014-08-14 13:40:02 108 c NaN Desktop
1 1788772 1831177 202234489 2014-08-14 13:41:37 108 c NaN iOS
2 1788776 1831182 205234489 2014-08-14 13:42:41 108 c NaN Desktop
3 1788780 1831186 202634489 2014-08-14 13:43:46 108 c NaN Desktop
8 9 10 11 \
0 coupon 49 XXX Ave Australia Victoria
1 NaN u7 38-46 South Street Australia New South Wales
2 NaN Level XXX Margaret Street(My Company) Australia New South Wales
3 NaN Po box ZZZ Australia New South Wales
12 13 14
0 3025 Melbourne NaN
1 2116 Sydney NaN
2 2000 Sydney Sydney
3 2444 NSW Other Port Macquarie
添加到read_csv
:
style$="width:{{ width }}px; background-color:red";
答案 1 :(得分:0)
以下是使用正则表达式的另一种解决方案:
import pandas as pd
import re
f = open('input.tsv')
fl = f.read()
f.close()
#Replace '\\n' with '\' using regex
fl = re.sub('\\\\\n','\\\\',s)
o = open('input_fix.tsv','w')
o.write(fl)
o.close()
cols = range(1,17)
#Prime the number of columns by specifying names for each column
#This takes care of the issue of variable number of columns
df = pd.read_csv(fl,sep='|',names=cols)
将产生以下结果: