我正在开展一个项目,我正在使用文件来构建AVL树来存储它。当我写入文件时,数据保存正确,但当我读取数据的位置时,它会返回先前存储在文件中的数据。
到目前为止我的代码
#include "stdafx.h"
#include "AVL.h"
#include <string>
#include <iostream>
#include <fstream>
// When tree is initialized open the input and output files
AVL::AVL(std::string treeFilePath)
{
inputTreeFile.open(treeFilePath, std::ios::binary);
if (inputTreeFile.fail())
std::cout << "failed to open input file" << std::endl;
outputTreeFile.open(treeFilePath, std::ios::binary | std::ios::trunc);
if (outputTreeFile.fail())
std::cout << "failed to open output file" << std::endl;
}
// close the tree files when destructing the tree
AVL::~AVL()
{
inputTreeFile.close();
outputTreeFile.close();
}
// writes the node to a given location of the output file
// based on the index of that node
void AVL::writeToDisk(Node node)
{
outputTreeFile.seekp(node.index * sizeof(Node));
char * buffer = (char *)&node;
outputTreeFile.write(buffer, sizeof(Node));
outputTreeFile.flush();
if (outputTreeFile.fail())
std::cout << "failed to write to output file" << std::endl;
}
// reads a node from the file given an index of the file in order to generate an offset
AVL::Node AVL::readFromDisk(int index)
{
Node node;
if (index == -1)
return node;
inputTreeFile.seekg(index * sizeof(Node));
inputTreeFile.read((char *)&node, sizeof(Node));
if (inputTreeFile.fail())
std::cout << "failed to read from input file" << std::endl;
return node;
}
// inserts a node into the tree and then checks balance factors to decide if a rotation is needed
// to maintain the balance of the tree
void AVL::insert(char input[30])
{
// If the root is null we only need to do a dumb insert and nothing else
if (root == -1)
{
root = 0;
node1.balanceFactor = 0;
node1.count = 1;
node1.index = 0;
node1.leftChild = -1;
node1.rightChild = -1;
strcpy_s(node1.value, input);
uniqueInserts++;
writeToDisk(node1);
return;
}
int p; // our current location on the tree
int q; // lags behind current node
int a; // the last parent of current node that had a balance factor of +- 1
int f; // lags behind recent nonzero
p = a = root;
q = f = -1;
node1 = readFromDisk(root);
// while the current node is not at the child of a leaf or a duplicate value keep traversing through the tree
// keeping track of the most recent nonzero balance factor node
while (p != -1)
{
if (strcmp(input, node1.value) == 0)
{
node1.count++;
writeToDisk(node1);
return;
}
if (node1.balanceFactor != 0)
{
a = p;
f = q;
}
q = p;
p = (strcmp(input, node1.value) < 0) ? node1.leftChild : node1.rightChild;
node1 = readFromDisk(p);
}
// Now the previous node is a leaf and the current node is the child of that leaf so we need
// to create a new node to insert
// node to insert is y
node1.balanceFactor = 0;
node1.count = 1;
int y = node1.index = uniqueInserts;
node1.leftChild = -1;
node1.rightChild = -1;
strcpy_s(node1.value, input);
uniqueInserts++;
writeToDisk(node1);
int b; // this is the child of the most recent nonzero balance factor in the direction of the potential rotation
int displacement; // this is used to correct balance factors later
// we need to know if the new node we are inserting is the left or the right child of the previous node so we
// can have the correct child pointer point to the new node
node2 = readFromDisk(q);
if (strcmp(input, node2.value) < 0)
node2.leftChild = y;
else
node2.rightChild = y;
writeToDisk(node2);
// if the value of the node we just inserted is less than that of the most recent nonzero balance factor node
// then we went left so the pivot needs to be the left child else its the right child
// the displacement is set based on the direction taken
node1 = readFromDisk(a);
if (strcmp(input, node1.value) > 0)
{
p = node1.rightChild;
b = p;
displacement = -1;
}
else
{
p = node1.leftChild;
b = p;
displacement = 1;
}
// then we traverse down from the most recent nonzero balance factor node to the node we inserted setting balance factors
// on the way down
while (p != y)
{
node1 = readFromDisk(p);
if (strcmp(input, node1.value) > 0)
{
node1.balanceFactor = -1;
p = node1.rightChild;
}
else
{
node1.balanceFactor = 1;
p = node1.leftChild;
}
writeToDisk(node1);
}
node1 = readFromDisk(a);
// if the tree was completely balanced recentNonZero will be at the root of the tree and our insert will
// have pushed the tree slightly out of balance
if (0 == node1.balanceFactor)
{
node1.balanceFactor = displacement;
writeToDisk(node1);
return;
}
// if the most reent nonzero balance factor is opposite the displacement then we put the tree back in balance
if (node1.balanceFactor == -displacement)
{
node1.balanceFactor = 0;
writeToDisk(node1);
return;
}
node2 = readFromDisk(b);
// At this point we have thrown the tree out of balance by inserting
// The displacement tells us the first direction of the rotation and the most recent non-zero balance factor node (b)
// tells us the second direction
if (displacement == 1)
{
if (node2.balanceFactor == 1) //LL
{
// set a's left child to b's right and b's right to a
// then fix balance factors
node1.leftChild = node2.rightChild;
node2.rightChild = a;
node1.balanceFactor = node2.balanceFactor = 0;
}
else //LR
{
// create a new node c that is b's right child
node3 = readFromDisk(node2.rightChild);
// for this rotation the order of a, b, and c are b < c < a
// so c gets pulled up to the middle and sets its children to b (left) and a (right)
// this cuts off c's children though so prior to this c's left needs to be attached as b's right
// and c's right is attached as a's left
// then attach c's children to a and b
node1.leftChild = node3.rightChild;
node2.rightChild = node3.leftChild;
// then set c's children to b and a
node3.leftChild = b;
node3.rightChild = a;
// then we set a and b's balance factors to 0 and correct one of them depending on what
// c's balance factor
node1.balanceFactor = node2.balanceFactor = 0;
if (node3.balanceFactor == 1)
node1.balanceFactor = -1;
else if (node3.balanceFactor == -1)
node2.balanceFactor = 1;
// then c's balance factor is fixed and set to 0
node3.balanceFactor = 0;
writeToDisk(node3);
b = node3.index; // this is for reattaching the subtree to the proper parent
}
}
else // again the next parts are symmetric so almost all the operations are just flipped
{
if (node2.balanceFactor == -1) //RR
{
node1.rightChild = node2.leftChild;
node2.leftChild = a;
node1.balanceFactor = node2.balanceFactor = 0;
}
else //RL
{
node3 = readFromDisk(node2.leftChild);
node1.rightChild = node3.leftChild;
node2.leftChild = node3.rightChild;
node3.rightChild = b;
node3.leftChild = a;
node1.balanceFactor = node2.balanceFactor = 0;
if (node3.balanceFactor == 1)
node2.balanceFactor = -1;
else if (node3.balanceFactor == -1)
node1.balanceFactor = 1;
node3.balanceFactor = 0;
writeToDisk(node3);
b = node3.index;
}
}
writeToDisk(node1);
writeToDisk(node2);
// if the parent of the recent non zero balance factor node was null then there were no nodes with a nonzero balance
// or the only one was the root. in either case the recent non zero was the root so whatever is in position b needs to
// be set as the root
if (f == -1)
{
root = b;
return;
}
node3 = readFromDisk(f);
// if the left child of the recent nonzero BF parent node is the recent nonzero node we need to attach the new
// root of the subtree (b) in a's place
if (node3.leftChild == a)
node3.leftChild = b;
else // otherwise its the right child that needs reattached
node3.rightChild = b;
writeToDisk(node3);
}
继承人我的主要
#include "stdafx.h"
#include "AVL.h"
#include <fstream>
#include <iostream>
#include <chrono>
using namespace std;
int main()
{
string inputFilePath = "C:\\Users\\DMCar\\Desktop\\a1s1.txt";
// set of delimiters for reading in the file
char delimiters[11] = { 9 , 10 , 13 , 32 , '.' , ',' , '!' , ';' , ':' , '(' , ')' };
AVL avl("C:\\Users\\DMCar\\Desktop\\test.txt");
std::ifstream inputStream;
inputStream.open(inputFilePath, std::ios::binary); // binary flag is set to read the file one byte at a time
// if we couldn't open the file, let the user know and return
if (inputStream.fail())
{
std::cout << "Could not open file" << std::endl;
return 0;
}
bool isDelimiter = false;
char nextChar;
inputStream.get(nextChar);
char input[30]{ 0 };
int index = 0;
// keep getting bytes until we have reached the end of the file
while (!inputStream.eof())
{
// loop through the delimiters to check if the character read is one of them
for each (char delimiter in delimiters)
{
// if the character is a delimiter we check to see if the word is empty
// if the word is not empty it is sent to the trees insert function
if (nextChar == delimiter)
{
if (input[0])
{
cout << input << endl;
avl.insert(input);
}
memset(input, 0, sizeof(input));
index = -1;
isDelimiter = true;
}
}
// if the character was not a delimiter we need to append it to next word
if (!isDelimiter)
input[index] = nextChar;
index++;
isDelimiter = false; // reset is delimiter
if (inputStream.eof())
{
int i = 1;
i++;
}
inputStream.get(nextChar); // try to read the next character
}
if (input[0] != 0)
{
avl.insert(input);
}
return 0;
}
我从莎士比亚集体作品的第1幕第1场插入,但是在插入第一部&#39; I&#39;在本节
writeToDisk(node2);
// if the value of the node we just inserted is less than that of the most recent nonzero balance factor node
// then we went left so the pivot needs to be the left child else its the right child
// the displacement is set based on the direction taken
node1 = readFromDisk(a);
此时node2包含&#39; ACT&#39;它的右子是1.这被写入位置0.因为a = 0这里node1将从位置0读取。因此回读的内容应与node2相同,但node1没有正确的右子。当它应该是1时,它返回的正确子项是-1。我已经逐步完成了代码,发现所有正确的数据都被写入文件,但是当调用read时,它的行为就像上一次写入从未发生过一样。
这是Node的结构
struct Node {
int leftChild = -1;
int rightChild = -1;
char value[30];
unsigned int count = 0;
int balanceFactor = 0;
int index = -1;
};
有谁知道可能会发生什么?所有的猜测都欢迎我现在已经看了好几个小时,但是无法弄明白。另外,我该如何解决这个问题?
答案 0 :(得分:1)
那是因为ifstream仅在第一次读取文件并将内容保留在缓冲区中供以后读取。
由于您将以读写模式操作文件,因此您可能只有一个文件处理程序。
第1步: 我们将读写流处理程序组合为一个,在AVL.h:
//std::ifstream inputTreeFile;
//std::ofstream outputTreeFile;
std::fstream treeFile;
第2步: 更改AVL构造函数:
AVL::AVL(std::string treeFilePath)
{
//inputTreeFile.open(treeFilePath, std::ios::binary | std::ios::);
//if (inputTreeFile.fail())
// std::cout << "failed to open input file" << std::endl;
//outputTreeFile.open(treeFilePath, std::ios::binary | std::ios::trunc);
//if (outputTreeFile.fail())
// std::cout << "failed to open output file" << std::endl;
treeFile.open(treeFilePath, std::ios::binary | std::ios::trunc | std::ios::in | std::ios::out);
if (treeFile.fail())
std::cout << "failed to open file" << std::endl;
}
第3步: 在read和write方法中将inputTreeFile和outputTreeFile替换为此treeFile:
// writes the node to a given location of the output file
// based on the index of that node
void AVL::writeToDisk(Node node)
{
treeFile.seekp(node.index * sizeof(Node));
char * buffer = (char *)&node;
treeFile.write(buffer, sizeof(Node));
treeFile.flush();
if (treeFile.fail())
std::cout << "failed to write to output file" << std::endl;
}
// reads a node from the file given an index of the file in order to generate an offset
AVL::Node AVL::readFromDisk(int index)
{
Node node;
if (index == -1)
return node;
treeFile.seekg(index * sizeof(Node));
treeFile.read((char *)&node, sizeof(Node));
char * p = (char *)&node;
if (treeFile.fail())
std::cout << "failed to read from input file" << std::endl;
return node;
}
现在你将看到预期的结果。