Heckman从Stata复制到R的错误

时间:2016-04-18 18:10:05

标签: r stata

我正在直接复制Heckman模型。原始数据和模型是通过Stata运行的,但我使用R,所以我将代码转换为R.我没有对已经提供的复制数据进行任何更改,并将heckman模型的.DO文件行复制到R使用sampleSelection包中的格式。下面是.DO文件代码行(顶部)和我使用的R代码(底部)。

    heckprob recip3 polity2_s lntpop_t regime territory vetoplayers_t military_t allybalance powerbalance contig, select(demand=polity2_s lntpop_t vetoplayers_t military_t powerbalance allybalance cinc_s syscon contig peaceyrs _prefail _spline1 _spline2 _spline3)

    orig.rep <- selection(selection=demand ~ polity2_s + lntpop_t + vetoplayers_t + military_t + powerbalance + allybalance + cinc_s + syscon + contig + peaceyrs + prefail + spline1 + spline2 + spline3, outcome=recip3 ~ polity2_s + lntpop_t + regime + territory + vetoplayers_t + military_t + allybalance + powerbalance + contig, data=mafordham, method="2step")

相同数据,无变化,观察次数相同,但模型呈现以下结果:

Tobit 2 model (sample selection model)
2-step Heckman / heckit estimation
51363 observations (50937 censored and 426 observed)
28 free parameters (df = 51336)
Probit selection equation:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)   -3.423e+00        Inf       0        1
polity2_s     -4.841e-03        Inf       0        1
lntpop_t       9.461e-02        Inf       0        1
vetoplayers_t -3.550e-01        Inf       0        1
military_t    -1.163e-01        Inf       0        1
powerbalance   2.393e-01        Inf       0        1
allybalance    1.180e-01        Inf       0        1
cinc_s         2.175e+00        Inf       0        1
syscon         9.013e-01        Inf       0        1
contig         5.577e-01        Inf       0        1
peaceyrs      -6.177e-02        Inf       0        1
prefail        6.056e-02        Inf       0        1
spline1       -1.611e-04        Inf       0        1
spline2        6.219e-05        Inf       0        1
spline3       -9.030e-07        Inf       0        1
Outcome equation:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)    1.023518         NA      NA       NA
polity2_s     -0.003224         NA      NA       NA
lntpop_t      -0.017170         NA      NA       NA
regime         0.230042         NA      NA       NA
territory      0.302224         NA      NA       NA
vetoplayers_t -0.158959         NA      NA       NA
military_t    -0.179308         NA      NA       NA
allybalance   -0.073449         NA      NA       NA
powerbalance   0.262756         NA      NA       NA
contig        -0.173194         NA      NA       NA
Multiple R-Squared:0.1509,      Adjusted R-Squared:0.1304
   Error terms:
              Estimate Std. Error t value Pr(>|t|)
invMillsRatio  -0.1746         NA      NA       NA
sigma           0.4821         NA      NA       NA
rho            -0.3621         NA      NA       NA
--------------------------------------------

如果我使用“ml”方法而不是“2step”,我会得到以下内容:

Tobit 2 model (sample selection model)
2-step Heckman / heckit estimation
51363 observations (50937 censored and 426 observed)
28 free parameters (df = 51336)
Probit selection equation:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)   -3.423e+00        Inf       0        1
polity2_s     -4.841e-03        Inf       0        1
lntpop_t       9.461e-02        Inf       0        1
vetoplayers_t -3.550e-01        Inf       0        1
military_t    -1.163e-01        Inf       0        1
powerbalance   2.393e-01        Inf       0        1
allybalance    1.180e-01        Inf       0        1
cinc_s         2.175e+00        Inf       0        1
syscon         9.013e-01        Inf       0        1
contig         5.577e-01        Inf       0        1
peaceyrs      -6.177e-02        Inf       0        1
prefail        6.056e-02        Inf       0        1
spline1       -1.611e-04        Inf       0        1
spline2        6.219e-05        Inf       0        1
spline3       -9.030e-07        Inf       0        1
Outcome equation:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)    1.023518         Inf       0        1
polity2_s     -0.003224         Inf       0        1
lntpop_t      -0.017170         Inf       0        1
regime         0.230042         Inf       0        1
territory      0.302224         Inf       0        1
vetoplayers_t -0.158959         Inf       0        1
military_t    -0.179308         Inf       0        1
allybalance   -0.073449         Inf       0        1
powerbalance   0.262756         Inf       0        1
contig        -0.173194         Inf       0        1
Multiple R-Squared:0.1509,      Adjusted R-Squared:0.1304
   Error terms:
              Estimate Std. Error t value Pr(>|t|)
invMillsRatio  -0.1746         Inf       0        1
sigma           0.4821         Inf       0        1
rho            -0.3621         Inf       0        1
--------------------------------------------

这里发生了什么?

Stata输出:

. use "MIDanalysis.dta"

. heckprob recip3 polity2_s lntpop_t regime territory vetoplayers_t military_t allybalance powerbalance contig, select(demand=polity2
> _s lntpop_t vetoplayers_t military_t powerbalance allybalance cinc_s syscon contig peaceyrs _prefail _spline1 _spline2 _spline3)

Fitting probit model:

Iteration 0:   log likelihood = -288.82075  
Iteration 1:   log likelihood =  -258.7276  
Iteration 2:   log likelihood =  -258.6303  
Iteration 3:   log likelihood =  -258.6303  

Fitting selection model:

Iteration 0:   log likelihood = -2465.7202  
Iteration 1:   log likelihood = -2136.8238  
Iteration 2:   log likelihood = -2021.4598  
Iteration 3:   log likelihood = -2020.9517  
Iteration 4:   log likelihood = -2020.9514  
Iteration 5:   log likelihood = -2020.9514  

Comparison:    log likelihood = -2279.5817

Fitting starting values:

Iteration 0:   log likelihood =  -295.2807  
Iteration 1:   log likelihood = -254.98637  
Iteration 2:   log likelihood = -254.88936  
Iteration 3:   log likelihood = -254.88936  

Fitting full model:

Iteration 0:   log likelihood = -2276.3311  
Iteration 1:   log likelihood = -2275.5899  
Iteration 2:   log likelihood = -2275.5896  
Iteration 3:   log likelihood = -2275.5896  

Probit model with sample selection              Number of obs     =     51,363
                                                Censored obs      =     50,937
                                                Uncensored obs    =        426

                                                Wald chi2(9)      =      58.42
Log likelihood =  -2275.59                      Prob > chi2       =     0.0000

-------------------------------------------------------------------------------
              |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
--------------+----------------------------------------------------------------
recip3        |
    polity2_s |  -.0086106   .0090562    -0.95   0.342    -.0263605    .0091392
     lntpop_t |  -.0583329   .0660009    -0.88   0.377    -.1876922    .0710265
       regime |   .5258624   .2178492     2.41   0.016     .0988857    .9528391
    territory |   .7307356   .1494662     4.89   0.000     .4377872    1.023684
vetoplayers_t |  -.4393531   .3109102    -1.41   0.158    -1.048726    .1700197
   military_t |  -.4793108   .1577225    -3.04   0.002    -.7884412   -.1701804
  allybalance |  -.1647296   .2941523    -0.56   0.575    -.7412575    .4117984
 powerbalance |   .6641183   .5484297     1.21   0.226    -.4107841    1.739021
       contig |  -.4881928   .1589762    -3.07   0.002    -.7997805   -.1766052
        _cons |   1.641254   .8420642     1.95   0.051    -.0091617    3.291669
--------------+----------------------------------------------------------------
demand        |
    polity2_s |  -.0049243   .0027605    -1.78   0.074    -.0103347    .0004861
     lntpop_t |   .0950719   .0207098     4.59   0.000     .0544814    .1356624
vetoplayers_t |   -.354703   .1021106    -3.47   0.001    -.5548362   -.1545699
   military_t |  -.1143112    .048599    -2.35   0.019    -.2095636   -.0190588
 powerbalance |   .2545916   .2113132     1.20   0.228    -.1595747    .6687579
  allybalance |   .1199024   .1016188     1.18   0.238    -.0792667    .3190715
       cinc_s |   2.231212   .3110974     7.17   0.000     1.621472    2.840952
       syscon |   .8490102   .4979293     1.71   0.088    -.1269132    1.824934
       contig |   .5622448   .0494747    11.36   0.000      .465276    .6592135
     peaceyrs |  -.0621602   .0089328    -6.96   0.000    -.0796681   -.0446523
     _prefail |   .0587419   .0083808     7.01   0.000     .0423158     .075168
     _spline1 |  -.0001617   .0000436    -3.71   0.000     -.000247   -.0000763
     _spline2 |   .0000621   .0000236     2.63   0.009     .0000158    .0001085
     _spline3 |  -7.19e-07   4.33e-06    -0.17   0.868    -9.21e-06    7.77e-06
        _cons |  -3.417173   .2519663   -13.56   0.000    -3.911018   -2.923329
--------------+----------------------------------------------------------------
      /athrho |   -.547384   .1869418    -2.93   0.003    -.9137831   -.1809849
--------------+----------------------------------------------------------------
          rho |   -.498557   .1404757                     -.7229431   -.1790343
-------------------------------------------------------------------------------
LR test of indep. eqns. (rho = 0):   chi2(1) =     7.98   Prob > chi2 = 0.0047

0 个答案:

没有答案