我有一个相对较大(约3GB,3百万条目)的子列表列表,其中每个子列表包含一组标签。这是一个非常简单的例子:
tag_corpus = [['cat', 'fish'], ['cat'], ['fish', 'dog', 'cat']]
unique_tags = ['dog', 'cat', 'fish']
co_occurences = {key:Counter() for key in unique_tags}
for tags in tag_corpus:
tallies = Counter(tags)
for key in tags:
co_occurences[key] = co_occurences[key] + tallies
这就像魅力一样,但它的实际数据集的速度很慢,因为它具有非常大的子列表(大约30K的唯一标记)。任何python专业人员都知道如何加速这件事吗?
答案 0 :(得分:1)
此可能更快。你必须要衡量。
from collections import Counter
from collections import defaultdict
tag_corpus = [['cat', 'fish'], ['cat'], ['fish', 'dog', 'cat']]
co_occurences = defaultdict(Counter)
for tags in tag_corpus:
for key in tags:
co_occurences[key].update(tags)
unique_tags = sorted(co_occurences)
print co_occurences
print unique_tags
答案 1 :(得分:1)
我只是在喋喋不休,不期望最终得到更高效的东西,但是拥有100000只猫,狗和鱼,这个速度要快得多,时间为0.07秒而不是1.25秒。
我试图找到一个更短的解决方案,但事实证明这种方式是最快的,即使它看起来很简单:)
occurances = {}
for tags in tag_corpus:
for key in tags:
for key2 in tags:
try:
occurances[key][key2] += 1
except KeyError:
try:
occurances[key][key2] = 1
except KeyError:
occurances[key] = {key2: 1}
答案 2 :(得分:1)
您可以尝试使用 defaultdict 进行梳理以避免在开始时使用Peters回答的逻辑进行初始化,运行时间会明显加快:
In [35]: %%timeit
co_occurences = defaultdict(Counter)
for tags in tag_corpus:
for key in tags:
co_occurences[key].update(tags)
....:
1 loop, best of 3: 513 ms per loop
In [36]: %%timeit
occurances = {k1: defaultdict(int) for k1 in unique_tags}
for tags in tag_corpus:
for key in tags:
for key2 in tags:
occurances[key][key2] += 1
....:
10 loops, best of 3: 65.7 ms per loop
In [37]: %%timeit
....: co_occurences = {key:Counter() for key in unique_tags}
....: for tags in tag_corpus:
....: tallies = Counter(tags)
....: for key in tags:
....: co_occurences[key] = co_occurences[key] + tallies
....:
1 loop, best of 3: 1.13 s per loop
In [38]: %%timeit
....: occurances = defaultdict(lambda: defaultdict(int))
....: for tags in tag_corpus:
....: for key in tags:
....: for key2 in tags:
....: occurances[key][key2] += 1
....:
10 loops, best of 3: 66.5 ms per loop
至少在python2中, Counter dict实际上并不是获取计数的最快方法,但是 defaultdict 即使使用lambda也是如此。
即使滚动自己的计数功能也会更快:
def count(x):
d = defaultdict(int)
for ele in x:
d[ele] += 1
return d
没有最快但仍然非常好的快:
In [42]: %%timeit
....: co_occurences = {key: defaultdict(int) for key in unique_tags}
....: for tags in tag_corpus:
....: tallies = count(tags)
....: for key in tags:
....: for k, v in tallies.items():
....: co_occurences[key][k] += v
....:
10 loops, best of 3: 164 ms per loop
如果你想要更多的加速,那么一些cython可能会有很长的路要走。