使用S3(法兰克福)和Spark

时间:2016-04-15 12:23:31

标签: scala hadoop amazon-s3 apache-spark

有人在使用hadoop / spark 1.6.0在法兰克福上使用s3吗?

我正在尝试将作业的结果存储在s3上,我的依赖项声明如下:

"org.apache.spark" %% "spark-core" % "1.6.0" exclude("org.apache.hadoop", "hadoop-client"),
"org.apache.spark" %% "spark-sql" % "1.6.0",
"org.apache.hadoop" % "hadoop-client" % "2.7.2",
"org.apache.hadoop" % "hadoop-aws" % "2.7.2"

我已设置以下配置:

System.setProperty("com.amazonaws.services.s3.enableV4", "true")
sc.hadoopConfiguration.set("fs.s3a.endpoint", ""s3.eu-central-1.amazonaws.com")

在我的RDD上调用saveAsTextFile时,它启动正常,将所有内容保存在S3上。但是,在从_temporary转移到最终输出结果的一段时间后,它会产生错误:

Exception in thread "main" com.amazonaws.services.s3.model.AmazonS3Exception: Status Code: 403, AWS Service: Amazon S3, AWS Request ID: XXXXXXXXXXXXXXXX, AWS Error Code: SignatureDoesNotMatch, AWS Error Message: The request signature we calculated does not match the signature you provided. Check your key and signing method., S3 Extended Request ID: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX=
at com.amazonaws.http.AmazonHttpClient.handleErrorResponse(AmazonHttpClient.java:798)
at com.amazonaws.http.AmazonHttpClient.executeHelper(AmazonHttpClient.java:421)
at com.amazonaws.http.AmazonHttpClient.execute(AmazonHttpClient.java:232)
at com.amazonaws.services.s3.AmazonS3Client.invoke(AmazonS3Client.java:3528)
at com.amazonaws.services.s3.AmazonS3Client.copyObject(AmazonS3Client.java:1507)
at com.amazonaws.services.s3.transfer.internal.CopyCallable.copyInOneChunk(CopyCallable.java:143)
at com.amazonaws.services.s3.transfer.internal.CopyCallable.call(CopyCallable.java:131)
at com.amazonaws.services.s3.transfer.internal.CopyMonitor.copy(CopyMonitor.java:189)
at com.amazonaws.services.s3.transfer.internal.CopyMonitor.call(CopyMonitor.java:134)
at com.amazonaws.services.s3.transfer.internal.CopyMonitor.call(CopyMonitor.java:46)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)

如果我使用来自spark包的hadoop-client,它甚至不会开始传输。错误是随机发生的,有时它会起作用,有时却不起作用。

3 个答案:

答案 0 :(得分:4)

请尝试设置以下值:

System.setProperty("com.amazonaws.services.s3.enableV4", "true")
hadoopConf.set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
hadoopConf.set("com.amazonaws.services.s3.enableV4", "true")
hadoopConf.set("fs.s3a.endpoint", "s3." + region + ".amazonaws.com")

请设置该存储桶所在的区域,在我的情况下是:eu-central-1

并将依赖项添加到gradle中或以其他方式:

dependencies {
    compile 'org.apache.hadoop:hadoop-aws:2.7.2'
}
希望它会有所帮助。

答案 1 :(得分:3)

如果您使用的是pyspark,以下内容适用于我

aws_profile = "your_profile"
aws_region = "eu-central-1"
s3_bucket = "your_bucket"

# see https://github.com/jupyter/docker-stacks/issues/127#issuecomment-214594895
os.environ['PYSPARK_SUBMIT_ARGS'] = "--packages=org.apache.hadoop:hadoop-aws:2.7.3 pyspark-shell"

# If this doesn't work you might have to delete your ~/.ivy2 directory to reset your package cache.
# (see https://github.com/databricks/spark-redshift/issues/244#issuecomment-239950148)
import pyspark
sc=pyspark.SparkContext()
# see https://github.com/databricks/spark-redshift/issues/298#issuecomment-271834485
sc.setSystemProperty("com.amazonaws.services.s3.enableV4", "true")

# see https://stackoverflow.com/questions/28844631/how-to-set-hadoop-configuration-values-from-pyspark
hadoop_conf=sc._jsc.hadoopConfiguration()
# see https://stackoverflow.com/questions/43454117/how-do-you-use-s3a-with-spark-2-1-0-on-aws-us-east-2
hadoop_conf.set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
hadoop_conf.set("com.amazonaws.services.s3.enableV4", "true")
hadoop_conf.set("fs.s3a.access.key", access_id)
hadoop_conf.set("fs.s3a.secret.key", access_key)

# see https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
hadoop_conf.set("fs.s3a.endpoint", "s3." + aws_region + ".amazonaws.com")

sql=pyspark.sql.SparkSession(sc)
path = s3_bucket + "your_file_on_s3"
dataS3=sql.read.parquet("s3a://" + path)

答案 2 :(得分:0)

从其他答案中得到启发,直接在pyspark shell中运行以下命令为我提供了所需的输出:

sc.setSystemProperty("com.amazonaws.services.s3.enableV4", "true") # fails without this
hc=sc._jsc.hadoopConfiguration()
hc.set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
hc.set("com.amazonaws.services.s3.enableV4", "true")
hc.set("fs.s3a.endpoint", end_point)
hc.set("fs.s3a.access.key",access_key)
hc.set("fs.s3a.secret.key",secret_key)
data = sc.textFile("s3a://bucket/file")
data.take(3)

在以下位置选择端点:list of endpoints 我能够从亚太地区(孟买)(ap-south-1)(仅是第4版区域)中获取数据。