如何将POS标记器与SentiWordNet算法集成

时间:2016-04-15 09:12:46

标签: java pos-tagger senti-wordnet

Here is my SentiWorNet Algo:



public class SWN3 {

private String pathToSWN = "C:/Users/RAHUL/Desktop/SWN/SentiWordNet_3.0.0.txt";
        private HashMap<String, Double>_dict;

        public SWN3(){

            _dict = new HashMap<String, Double>();
            HashMap<String, Vector<Double>> _temp = new HashMap<String, Vector<Double>>();
            try{
                BufferedReader csv =  new BufferedReader(new FileReader(pathToSWN));
                String line = "";           
                while((line = csv.readLine()) != null)
                {
                    String[] data = line.split("\t");
                    Double score = Double.parseDouble(data[2])-Double.parseDouble(data[3]);
                    String[] words = data[4].split(" ");
                    for(String w:words)
                    {
                        String[] w_n = w.split("#");
                        w_n[0] += "#"+data[0];
                        int index = Integer.parseInt(w_n[1])-1;
                        if(_temp.containsKey(w_n[0]))
                        {
                            Vector<Double> v = _temp.get(w_n[0]);
                            if(index>v.size())
                                for(int i = v.size();i<index; i++)
                                    v.add(0.0);
                            v.add(index, score);
                            _temp.put(w_n[0], v);
                        }
                        else
                        {
                            Vector<Double> v = new Vector<Double>();
                            for(int i = 0;i<index; i++)
                                v.add(0.0);
                            v.add(index, score);
                            _temp.put(w_n[0], v);
                        }
                    }
                }
                Set<String> temp = _temp.keySet();
                for (Iterator<String> iterator = temp.iterator(); iterator.hasNext();) {
                    String word = iterator.next();
                    Vector<Double> v = _temp.get(word);
                    double score = 0.0;
                    double sum = 0.0;
                    for(int i = 0; i < v.size(); i++)
                        score += ((double)1/(double)(i+1))*v.get(i);
                    for(int i = 1; i<=v.size(); i++)
                        sum += (double)1/(double)i;
                    score /= sum;
                    String sent = "";               
                    if(score>=0.75)
                        sent = "strong_positive";
                    else
                    if(score > 0.50 && score<0.75)
                        sent = "moderately_positive";
                    else
                        if(score > 0.25 && score>=0.50)
                            sent = "positive";
                    else
                    if(score > 0 && score>=0.25)
                        sent = "weak_positive";
                    else
                    if(score < 0 && score>=-0.25)
                        sent = "weak_negative";
                    else
                    if(score < -0.25 && score>=-0.5)
                        sent = "negative";
                    else
                        if(score < -0.50 && score>-0.75)
                            sent = "moderately_negative";
                    else
                    if(score<=-0.75)
                        sent = "strong_negative";
                    _dict.put(word, score);
                }
            }
            catch(Exception e){e.printStackTrace();}        
        }

public Double extract(String word)
{
   Double total = new Double(0);
    if(_dict.get(word+"#n") != null)
         total = _dict.get(word+"#n") + total;
    if(_dict.get(word+"#a") != null)
        total = _dict.get(word+"#a") + total;
    if(_dict.get(word+"#r") != null)
        total = _dict.get(word+"#r") + total;
    if(_dict.get(word+"#v") != null)
        total = _dict.get(word+"#v") + total;
    return total;
}



public static String SentiWord(String stri) {
    SWN3 test = new SWN3();
    String sentence=stri;
    String[] words = sentence.split("\\s+"); 
    double totalScore = 0;
    for(String word : words) {
        word = word.replaceAll("([^a-zA-Z\\s])", "");
        if (test.extract(word) == null)
            continue;
        totalScore += test.extract(word);
    }

    String sent = "";               
    if(totalScore>=0.75)
        sent = "strong_positive";
    else
    if(totalScore > 0.25 && totalScore<0.75)
        sent = "positive";
   ....
   ....

    return sent;
}

}

这是我的Pos Tagger方法:

public class TagText {
public static void main(String[] args) throws IOException,
ClassNotFoundException {

// Initialize the tagger
MaxentTagger tagger = new MaxentTagger("taggers/english-left3words-distsim.tagger");

// The sample string
String sample = "This is a sample text";

// The tagged string
String tagged = tagger.tagString(sample);

//output the tagged sample string onto your console
System.out.println("Input: " + sample);
System.out.println("Output: "+ tagged);
}
}

我需要将POS Tagger与SentiwordNet集成。我正在尝试建立一个用于感伤分析的系统。现在这个SentiwordNet代码工作正常,没有pos标记,但没有给出好的结果。我只是想不出来。请帮忙。

1 个答案:

答案 0 :(得分:0)

您可以像 select count(1) from s_srv_req sr, s_evt_act act, s_bu bu where sr.row_id = act.sra_sr_id(+) and sr.bu_id = bu.row_id and sr.last_upd > to_date('31-DEC-2013','DD-MON-YYYY') and **(X_REASON_CODE1 is not null OR X_REASON_CODE2 is not null OR X_CONCERN_CODE1 is not null OR X_CONCERN_CODE2 is not null OR X_COMPONENT_CODE is not null)** 这样调整extract方法:

SWN3

它将tagspublic Double extract(String word, String tail) { if (tail.contains("NN") || tail.contains("NNS") || tail.contains("NNP") || tail.contains("NNPS")) return _dict.get(word + "#n"); else if (tail.contains("VB") || tail.contains("VBD") || tail.contains("VBG") || tail.contains("VBN") || tail.contains("VBP") || tail.contains("VBZ")) return _dict.get(word + "#v"); else if (tail.contains("JJ") || tail.contains("JJR") || tail.contains("JJS")) return _dict.get(word + "#a"); else if (tail.contains("RB") || tail.contains("RBR") || tail.contains("RBS")) return _dict.get(word + "#r"); else return null; } 中定义的单词类型进行映射。我建议改变你的主要方法:

SentiWordNet

我在public static void main(String[] args) { MaxentTagger tagger = new MaxentTagger("files/english-left3words-distsim.tagger"); //String sample = "This is a sample text"; String sample = "It works much better with this great example!"; sample = sample.replaceAll("([^a-zA-Z\\s])", ""); String[] words = sample.split("\\s+"); String taggedSample = tagger.tagString(sample); String[] taggedWords = taggedSample.split("\\s+"); System.out.println(tagger.tagString(sample)); double totalScore = 0; SWN3 test = new SWN3(); System.out.println("-----------"); for (int i=0; i<taggedWords.length;i++) { String tail = taggedWords[i].substring(words[i].length() + 1); Double score = null; if(tail!=null{ score = test.extract(words[i], tail); System.out.println(taggedWords[i] + "\t" + words[i] + "\t" + tail + "\t" + score); } if (score == null) continue; totalScore += score; } System.out.println("-----------"); System.out.println(totalScore); } 中使用了另一个更好的句子。请注意,单独标记句子和标记单词可能会导致不同的结果。

我希望它有所帮助。