我有一个用例,我需要删除数据帧的重复行(在这种情况下,重复意味着它们具有相同的' id'字段),同时保持行具有最高的& #39;时间戳' (unix timestamp)字段。
我找到了drop_duplicate方法(我使用了pyspark),但是一个人无法控制将保留哪个项目。
任何人都可以提供帮助? Thx提前
答案 0 :(得分:9)
可能需要手动地图和缩小来提供您想要的功能。
def selectRowByTimeStamp(x,y):
if x.timestamp > y.timestamp:
return x
return y
dataMap = data.map(lambda x: (x.id, x))
uniqueData = dataMap.reduceByKey(selectRowByTimeStamp)
这里我们根据id对所有数据进行分组。然后,当我们减少分组时,我们通过保留具有最高时间戳的记录来实现。当代码完成reduce时,每个id只剩下1条记录。
答案 1 :(得分:5)
您可以这样做:
val df = Seq(
(1,12345678,"this is a test"),
(1,23456789, "another test"),
(2,2345678,"2nd test"),
(2,1234567, "2nd another test")
).toDF("id","timestamp","data")
+---+---------+----------------+
| id|timestamp| data|
+---+---------+----------------+
| 1| 12345678| this is a test|
| 1| 23456789| another test|
| 2| 2345678| 2nd test|
| 2| 1234567|2nd another test|
+---+---------+----------------+
df.join(
df.groupBy($"id").agg(max($"timestamp") as "r_timestamp").withColumnRenamed("id", "r_id"),
$"id" === $"r_id" && $"timestamp" === $"r_timestamp"
).drop("r_id").drop("r_timestamp").show
+---+---------+------------+
| id|timestamp| data|
+---+---------+------------+
| 1| 23456789|another test|
| 2| 2345678| 2nd test|
+---+---------+------------+
如果您预计timestamp
可能会重复id
(请参阅下面的评论),您可以这样做:
df.dropDuplicates(Seq("id", "timestamp")).join(
df.groupBy($"id").agg(max($"timestamp") as "r_timestamp").withColumnRenamed("id", "r_id"),
$"id" === $"r_id" && $"timestamp" === $"r_timestamp"
).drop("r_id").drop("r_timestamp").show