我试图在python中使用TextBlob在推文上实现朴素贝叶斯分类器。我已经能够训练数据集,并且可以使用以下方法成功地对单个推文进行分类:
print cl.classify("text")
现在我想打开一个csv文件并对该文件中的所有推文进行分类。有关如何实现这一目标的任何建议?我的代码如下:
import csv
from textblob import TextBlob
with open(test_path, 'rU') as csvfile:
lineReader = csv.reader(csvfile,delimiter=',',quotechar="\"")
lineReader = csv.reader(csvfile,delimiter=',')
test = []
for row in lineReader:
blob = (row[0])
blob = TextBlob(blob)
test.append([blob])
print (test.classify())
AttributeError:' list'对象没有属性'分类'
答案 0 :(得分:0)
你也需要先训练(不清楚你是否做过这个?),
train = []
# then repeat your above lines, appending each tweet to train set
# but for a separate training set (or slice up the rows)
# do your test append loop -----
# 1. Now train a model
my_classifier = NaiveBayesClassifier(train)
# 2. test given to the model to get accuracy
accu = my_classifier.accuracy(test)