复杂的JMESPath过滤大型JSON文件

时间:2016-04-09 23:36:15

标签: python amazon-web-services jmespath

请考虑以下JSON摘录(数据要大得多,但这是我试图开始工作的一小部分)

priceJson = json.loads(jsonData)
query = "products.*.attributes[?operatingSystem=='Windows' && tenancy=='Shared']"
output_dict = jmespath.search(query, priceJson)

我无法创建一个合适的过滤器来查找所有带有“Windows”作为operatingSystem和租户共享的产品。

我达到了这一点:

[{        
        "location" : "US East (N. Virginia)",
        "instanceType" : "hs1.8xlarge",
        "tenancy" : "Shared",
        "operatingSystem" : "Windows",
        "licenseModel" : "License Included",
        "preInstalledSw" : "NA"
}]

但是我这样松开了sku。

结果:

[
  { "sku": "DQ578CGN99KG6ECF",
    "attributes" : {
        "location" : "US East (N. Virginia)",
        "instanceType" : "hs1.8xlarge",
        "tenancy" : "Shared",
        "operatingSystem" : "Windows",
        "licenseModel" : "License Included",
        "preInstalledSw" : "NA"
    }
}]

我想得到什么:

var keys = ["anik","manik","philip"];
var values = [1,2,3];
var results = keys.map(function(k, index){
  return {[k]:values[index]}
});
console.log(results);

知道如何达到这个结果吗?

2 个答案:

答案 0 :(得分:1)

我继续寻找答案,我终于成功了解了我的结果!

关键是分两步完成:)

这是我现在使用的代码:

#!/usr/bin/env python
try:
    # For Python 3.0 and later
    from urllib.request import urlopen
except ImportError:
    # Fall back to Python 2's urllib2
    from urllib2 import urlopen

import json, jmespath

jsonData = """{
  "products" : {
    "DQ578CGN99KG6ECF" : {
      "sku" : "DQ578CGN99KG6ECF",
      "productFamily" : "Compute",
      "attributes" : {
        "location" : "US East (N. Virginia)",
        "instanceType" : "hs1.8xlarge",
        "tenancy" : "Shared",
        "operatingSystem" : "Windows",
        "licenseModel" : "License Included",
        "preInstalledSw" : "NA"
      }
    },
    "G2N9F3PVUVK8ZTGP" : {
      "sku" : "G2N9F3PVUVK8ZTGP",
      "productFamily" : "Instance",
      "attributes" : {
        "location" : "Asia Pacific (Seoul)",
        "instanceType" : "i2.xlarge",
        "tenancy" : "Host",
        "operatingSystem" : "Windows",
        "licenseModel" : "License Included",
        "preInstalledSw" : "SQL Server Enterprise"
      }
    },
    "FBZZ2TKXWWY5HZRX" : {
      "sku" : "FBZZ2TKXWWY5HZRX",
      "productFamily" : "Compute",
      "attributes" : {
        "location" : "Asia Pacific (Seoul)",
        "instanceType" : "i2.4xlarge",
        "tenancy" : "Dedicated",
        "operatingSystem" : "SUSE",
        "licenseModel" : "No License required",
        "preInstalledSw" : "NA"
      }
    }
  }
}"""

priceJson = json.loads(jsonData)

query = "products.*.{sku: sku, location: attributes.location, instanceType: attributes.instanceType, tenancy: attributes.tenancy, operatingSystem: attributes.operatingSystem, licenseModel: attributes.licenseModel, preInstalledSw: attributes.preInstalledSw}"
output_dict = jmespath.search(query, priceJson)

query2 = "[?operatingSystem=='Windows' && tenancy=='Shared']"
output_dict = jmespath.search(query2, output_dict)

print(output_dict)

结果:

[
  {
    "preInstalledSw": "NA",
    "location": "US East (N. Virginia)",
    "sku": "DQ578CGN99KG6ECF",
    "operatingSystem": "Windows",
    "tenancy": "Shared",
    "instanceType": "hs1.8xlarge",
    "licenseModel": "License Included"
  }
]

答案 1 :(得分:0)

您可以通过一个查询来完成:

products.*.{\"attributes\":attributes,\"sku\":sku}[?attributes.operatingSystem==`Windows` && attributes.tenancy==`Shared`]