如何在R中有效使用Rprof?

时间:2010-09-06 10:50:16

标签: r profiling profiler

我想知道是否可以从R - 代码中获取与matlab的Profiler类似的方式。也就是说,要知道哪个行号特别慢。

到目前为止,我所取得的成绩在某种程度上并不令人满意。我使用Rprof来创建个人资料文件。使用summaryRprof我会得到以下内容:

$by.self
                  self.time self.pct total.time total.pct
[.data.frame               0.72     10.1       1.84      25.8
inherits                   0.50      7.0       1.10      15.4
data.frame                 0.48      6.7       4.86      68.3
unique.default             0.44      6.2       0.48       6.7
deparse                    0.36      5.1       1.18      16.6
rbind                      0.30      4.2       2.22      31.2
match                      0.28      3.9       1.38      19.4
[<-.factor                 0.28      3.9       0.56       7.9
levels                     0.26      3.7       0.34       4.8
NextMethod                 0.22      3.1       0.82      11.5
...

$by.total
                      total.time total.pct self.time self.pct
data.frame                  4.86      68.3      0.48      6.7
rbind                       2.22      31.2      0.30      4.2
do.call                     2.22      31.2      0.00      0.0
[                           1.98      27.8      0.16      2.2
[.data.frame                1.84      25.8      0.72     10.1
match                       1.38      19.4      0.28      3.9
%in%                        1.26      17.7      0.14      2.0
is.factor                   1.20      16.9      0.10      1.4
deparse                     1.18      16.6      0.36      5.1
...

说实话,从这个输出我不知道我的瓶颈在哪里因为(a)我经常使用data.frame而(b)我从不使用例如deparse。此外,什么是[

所以我尝试了Hadley Wickham的profr,但考虑到下面的图表,它没有任何用处: alt text

有没有更方便的方法来查看哪些行号和特定函数调用很慢?
或者,是否有一些我应该咨询的文献?

任何提示都表示赞赏。

编辑1:
根据Hadley的评论,我将粘贴下面的脚本代码和图表的基本图形版本。但请注意,我的问题与此特定脚本无关。这只是我最近写的一个随机脚本。 我正在寻找一种如何找到瓶颈并加快R代码的一般方法。

数据(x)如下所示:

type      word    response    N   Classification  classN
Abstract  ANGER   bitter      1   3a              3a
Abstract  ANGER   control     1   1a              1a
Abstract  ANGER   father      1   3a              3a
Abstract  ANGER   flushed     1   3a              3a
Abstract  ANGER   fury        1   1c              1c
Abstract  ANGER   hat         1   3a              3a
Abstract  ANGER   help        1   3a              3a
Abstract  ANGER   mad         13  3a              3a
Abstract  ANGER   management  2   1a              1a
... until row 1700

脚本(简短说明)是:

Rprof("profile1.out")

# A new dataset is produced with each line of x contained x$N times 
y <- vector('list',length(x[,1]))
for (i in 1:length(x[,1])) {
  y[[i]] <- data.frame(rep(x[i,1],x[i,"N"]),rep(x[i,2],x[i,"N"]),rep(x[i,3],x[i,"N"]),rep(x[i,4],x[i,"N"]),rep(x[i,5],x[i,"N"]),rep(x[i,6],x[i,"N"]))
}
all <- do.call('rbind',y)
colnames(all) <- colnames(x)

# create a dataframe out of a word x class table
table_all <- table(all$word,all$classN)
dataf.all <- as.data.frame(table_all[,1:length(table_all[1,])])
dataf.all$words <- as.factor(rownames(dataf.all))
dataf.all$type <- "no"
# get type of the word.
words <- levels(dataf.all$words)
for (i in 1:length(words)) {
  dataf.all$type[i] <- as.character(all[pmatch(words[i],all$word),"type"])
}
dataf.all$type <- as.factor(dataf.all$type)
dataf.all$typeN <- as.numeric(dataf.all$type)

# aggregate response categories
dataf.all$c1 <- apply(dataf.all[,c("1a","1b","1c","1d","1e","1f")],1,sum)
dataf.all$c2 <- apply(dataf.all[,c("2a","2b","2c")],1,sum)
dataf.all$c3 <- apply(dataf.all[,c("3a","3b")],1,sum)

Rprof(NULL)

library(profr)
ggplot.profr(parse_rprof("profile1.out"))

最终数据如下所示:

1a    1b  1c  1d  1e  1f  2a  2b  2c  3a  3b  pa  words   type    typeN   c1  c2  c3  pa
3 0   8   0   0   0   0   0   0   24  0   0   ANGER   Abstract    1   11  0   24  0
6 0   4   0   1   0   0   11  0   13  0   0   ANXIETY Abstract    1   11  11  13  0
2 11  1   0   0   0   0   4   0   17  0   0   ATTITUDE    Abstract    1   14  4   17  0
9 18  0   0   0   0   0   0   0   0   8   0   BARREL  Concrete    2   27  0   8   0
0 1   18  0   0   0   0   4   0   12  0   0   BELIEF  Abstract    1   19  4   12  0

基础图: alt text

Running the script today also changed the ggplot2 graph a little (basically only the labels), see here.

4 个答案:

答案 0 :(得分:50)

昨天breaking news的警报读者(R 3.0.0终于出局了)可能已经注意到与此问题直接相关的一些有趣内容:

  
      
  • 通过Rprof()进行分析现在可选地在语句级别记录信息,而不仅仅是功能级别。
  •   

事实上,这个新功能回答了我的问题,我将展示如何。


让我们说,我们想要比较矢量化和预分配是否真的比良好的旧for循环和数据的增量构建在计算总结统计量(如均值)时更好。相对愚蠢的代码如下:

# create big data frame:
n <- 1000
x <- data.frame(group = sample(letters[1:4], n, replace=TRUE), condition = sample(LETTERS[1:10], n, replace = TRUE), data = rnorm(n))

# reasonable operations:
marginal.means.1 <- aggregate(data ~ group + condition, data = x, FUN=mean)

# unreasonable operations:
marginal.means.2 <- marginal.means.1[NULL,]

row.counter <- 1
for (condition in levels(x$condition)) {
  for (group in levels(x$group)) {  
    tmp.value <- 0
    tmp.length <- 0
    for (c in 1:nrow(x)) {
      if ((x[c,"group"] == group) & (x[c,"condition"] == condition)) {
        tmp.value <- tmp.value + x[c,"data"]
        tmp.length <- tmp.length + 1
      }
    }
    marginal.means.2[row.counter,"group"] <- group 
    marginal.means.2[row.counter,"condition"] <- condition
    marginal.means.2[row.counter,"data"] <- tmp.value / tmp.length
    row.counter <- row.counter + 1
  }
}

# does it produce the same results?
all.equal(marginal.means.1, marginal.means.2)

要将此代码与Rprof一起使用,我们需要parse它。也就是说,它需要保存在一个文件中,然后从那里调用。因此,我将其上传到pastebin,但它与本地文件完全相同。

现在,我们

  • 只需创建个人资料文件,并指明我们要保存行号
  • 使用令人难以置信的组合eval(parse(..., keep.source = TRUE))来源代码(看似臭名昭着的fortune(106)在这里不适用,因为我还没有找到另一种方式)
  • 停止分析并指出我们希望输出基于行号。

代码是:

Rprof("profile1.out", line.profiling=TRUE)
eval(parse(file = "http://pastebin.com/download.php?i=KjdkSVZq", keep.source=TRUE))
Rprof(NULL)

summaryRprof("profile1.out", lines = "show")

给出了:

$by.self
                           self.time self.pct total.time total.pct
download.php?i=KjdkSVZq#17      8.04    64.11       8.04     64.11
<no location>                   4.38    34.93       4.38     34.93
download.php?i=KjdkSVZq#16      0.06     0.48       0.06      0.48
download.php?i=KjdkSVZq#18      0.02     0.16       0.02      0.16
download.php?i=KjdkSVZq#23      0.02     0.16       0.02      0.16
download.php?i=KjdkSVZq#6       0.02     0.16       0.02      0.16

$by.total
                           total.time total.pct self.time self.pct
download.php?i=KjdkSVZq#17       8.04     64.11      8.04    64.11
<no location>                    4.38     34.93      4.38    34.93
download.php?i=KjdkSVZq#16       0.06      0.48      0.06     0.48
download.php?i=KjdkSVZq#18       0.02      0.16      0.02     0.16
download.php?i=KjdkSVZq#23       0.02      0.16      0.02     0.16
download.php?i=KjdkSVZq#6        0.02      0.16      0.02     0.16

$by.line
                           self.time self.pct total.time total.pct
<no location>                   4.38    34.93       4.38     34.93
download.php?i=KjdkSVZq#6       0.02     0.16       0.02      0.16
download.php?i=KjdkSVZq#16      0.06     0.48       0.06      0.48
download.php?i=KjdkSVZq#17      8.04    64.11       8.04     64.11
download.php?i=KjdkSVZq#18      0.02     0.16       0.02      0.16
download.php?i=KjdkSVZq#23      0.02     0.16       0.02      0.16

$sample.interval
[1] 0.02

$sampling.time
[1] 12.54

检查source code告诉我们问题行(#17)确实是for循环中的愚蠢if - 语句。与使用矢量化代码计算相同的时间相比(第6行)。

我没有尝试过任何图形输出,但到目前为止我已经对此印象深刻。

答案 1 :(得分:11)

更新:此函数已重写以处理行号。它在github here上。

我编写了这个函数来解析来自Rprof的文件,并输出一个比summaryRprof更清晰的结果表。它显示了完整的函数堆栈(以及line.profiling=TRUE时的行号),以及它们对运行时的相对贡献:

proftable <- function(file, lines=10) {
# require(plyr)
  interval <- as.numeric(strsplit(readLines(file, 1), "=")[[1L]][2L])/1e+06
  profdata <- read.table(file, header=FALSE, sep=" ", comment.char = "",
                         colClasses="character", skip=1, fill=TRUE,
                         na.strings="")
  filelines <- grep("#File", profdata[,1])
  files <- aaply(as.matrix(profdata[filelines,]), 1, function(x) {
                        paste(na.omit(x), collapse = " ") })
  profdata <- profdata[-filelines,]
  total.time <- interval*nrow(profdata)
  profdata <- as.matrix(profdata[,ncol(profdata):1])
  profdata <- aaply(profdata, 1, function(x) {
                      c(x[(sum(is.na(x))+1):length(x)],
                        x[seq(from=1,by=1,length=sum(is.na(x)))])
              })
  stringtable <- table(apply(profdata, 1, paste, collapse=" "))
  uniquerows <- strsplit(names(stringtable), " ")
  uniquerows <- llply(uniquerows, function(x) replace(x, which(x=="NA"), NA))
  dimnames(stringtable) <- NULL
  stacktable <- ldply(uniquerows, function(x) x)
  stringtable <- stringtable/sum(stringtable)*100
  stacktable <- data.frame(PctTime=stringtable[], stacktable)
  stacktable <- stacktable[order(stringtable, decreasing=TRUE),]
  rownames(stacktable) <- NULL
  stacktable <- head(stacktable, lines)
  na.cols <- which(sapply(stacktable, function(x) all(is.na(x))))
  stacktable <- stacktable[-na.cols]
  parent.cols <- which(sapply(stacktable, function(x) length(unique(x)))==1)
  parent.call <- paste0(paste(stacktable[1,parent.cols], collapse = " > ")," >")
  stacktable <- stacktable[,-parent.cols]
  calls <- aaply(as.matrix(stacktable[2:ncol(stacktable)]), 1, function(x) {
                   paste(na.omit(x), collapse= " > ")
                     })
  stacktable <- data.frame(PctTime=stacktable$PctTime, Call=calls)
  frac <- sum(stacktable$PctTime)
  attr(stacktable, "total.time") <- total.time
  attr(stacktable, "parent.call") <- parent.call
  attr(stacktable, "files") <- files
  attr(stacktable, "total.pct.time") <- frac
  cat("\n")
  print(stacktable, row.names=FALSE, right=FALSE, digits=3)
  cat("\n")
  cat(paste(files, collapse="\n"))
  cat("\n")
  cat(paste("\nParent Call:", parent.call))
  cat(paste("\n\nTotal Time:", total.time, "seconds\n"))
  cat(paste0("Percent of run time represented: ", format(frac, digits=3)), "%")

  invisible(stacktable)
}

在Henrik的示例文件上运行它,我得到了这个:

> Rprof("profile1.out", line.profiling=TRUE)
> source("http://pastebin.com/download.php?i=KjdkSVZq")
> Rprof(NULL)
> proftable("profile1.out", lines=10)

 PctTime Call                                                      
 20.47   1#17 > [ > 1#17 > [.data.frame                            
  9.73   1#17 > [ > 1#17 > [.data.frame > [ > [.factor             
  8.72   1#17 > [ > 1#17 > [.data.frame > [ > [.factor > NextMethod
  8.39   == > Ops.factor                                           
  5.37   ==                                                        
  5.03   == > Ops.factor > noNA.levels > levels                    
  4.70   == > Ops.factor > NextMethod                              
  4.03   1#17 > [ > 1#17 > [.data.frame > [ > [.factor > levels    
  4.03   1#17 > [ > 1#17 > [.data.frame > dim                      
  3.36   1#17 > [ > 1#17 > [.data.frame > length                   

#File 1: http://pastebin.com/download.php?i=KjdkSVZq

Parent Call: source > withVisible > eval > eval >

Total Time: 5.96 seconds
Percent of run time represented: 73.8 %

请注意,“父级调用”适用于表中表示的所有堆栈。当你的IDE或任何调用你的代码将它包装在一堆函数中时,这非常有用。

答案 2 :(得分:3)

我目前在这里安装了R,但在SPlus中你可以用Escape键中断执行,然后执行traceback(),它会显示调用堆栈。这应该可以让您使用this handy method

基于与 gprof 相同的概念构建的

Here are some reasons why工具在定位性能问题方面不是很好。

答案 3 :(得分:2)

另一个解决方案来自另一个问题:how to effectively use library(profr) in R

例如:

install.packages("profr")
devtools::install_github("alexwhitworth/imputation")

x <- matrix(rnorm(1000), 100)
x[x>1] <- NA
library(imputation)
library(profr)
a <- profr(kNN_impute(x, k=5, q=2), interval= 0.005)

似乎(至少对我而言),就像这里的情节一样有用(例如plot(a))。但数据结构本身似乎确实提出了一个解决方案:

R> head(a, 10)
   level g_id t_id                f start   end n  leaf  time     source
9      1    1    1       kNN_impute 0.005 0.190 1 FALSE 0.185 imputation
10     2    1    1        var_tests 0.005 0.010 1 FALSE 0.005       <NA>
11     2    2    1            apply 0.010 0.190 1 FALSE 0.180       base
12     3    1    1         var.test 0.005 0.010 1 FALSE 0.005      stats
13     3    2    1              FUN 0.010 0.110 1 FALSE 0.100       <NA>
14     3    2    2              FUN 0.115 0.190 1 FALSE 0.075       <NA>
15     4    1    1 var.test.default 0.005 0.010 1 FALSE 0.005       <NA>
16     4    2    1           sapply 0.010 0.040 1 FALSE 0.030       base
17     4    3    1    dist_q.matrix 0.040 0.045 1 FALSE 0.005 imputation
18     4    4    1           sapply 0.045 0.075 1 FALSE 0.030       base

单次迭代解决方案:

这就是数据结构建议使用tapply来汇总数据。对于单次运行profr::profr

,这可以非常简单地完成
t <- tapply(a$time, paste(a$source, a$f, sep= "::"), sum)
t[order(t)] # time / function
R> round(t[order(t)] / sum(t), 4) # percentage of total time / function

base::!                    base::%in%                       base::|           base::anyDuplicated 
                       0.0015                        0.0015                        0.0015                        0.0015 
                      base::c                 base::deparse                     base::get                   base::match 
                       0.0015                        0.0015                        0.0015                        0.0015 
                   base::mget                     base::min                       base::t                   methods::el 
                       0.0015                        0.0015                        0.0015                        0.0015 
          methods::getGeneric        NA::.findMethodInTable               NA::.getGeneric      NA::.getGenericFromCache 
                       0.0015                        0.0015                        0.0015                        0.0015 
NA::.getGenericFromCacheTable                   NA::.identC             NA::.newSignature        NA::.quickCoerceSelect 
                       0.0015                        0.0015                        0.0015                        0.0015 
                NA::.sigLabel          NA::var.test.default                 NA::var_tests               stats::var.test 
                       0.0015                        0.0015                        0.0015                        0.0015 
                  base::paste                 methods::as<-     NA::.findInheritedMethods        NA::.getClassFromCache 
                       0.0030                        0.0030                        0.0030                        0.0030 
               NA::doTryCatch              NA::tryCatchList               NA::tryCatchOne               base::crossprod 
                       0.0030                        0.0030                        0.0030                        0.0045 
                    base::try                base::tryCatch          methods::getClassDef      methods::possibleExtends 
                       0.0045                        0.0045                        0.0045                        0.0045 
          methods::loadMethod                   methods::is     imputation::dist_q.matrix          methods::validObject 
                       0.0075                        0.0090                        0.0120                        0.0136 
       NA::.findNextFromTable        methods::addNextMethod               NA::.nextMethod                  base::lapply 
                       0.0166                        0.0346                        0.0361                        0.0392 
                 base::sapply     imputation::impute_fn_knn                  methods::new        imputation::kNN_impute 
                       0.0392                        0.0392                        0.0437                        0.0557 
      methods::callNextMethod      kernlab::as.kernelMatrix                   base::apply         kernlab::kernelMatrix 
                       0.0572                        0.0633                        0.0663                        0.0753 
          methods::initialize                       NA::FUN         base::standardGeneric 
                       0.0798                        0.0994                        0.1325 

从这一点开始,我可以看到用户kernlab::kernelMatrix的最长时间以及来自 R 的S4类和泛型的开销。

优选:

我注意到,鉴于采样过程的随机性,我更倾向于使用平均值来获得更加稳健的时间曲线图:

prof_list <- replicate(100, profr(kNN_impute(x, k=5, q=2), 
    interval= 0.005), simplify = FALSE)

fun_timing <- vector("list", length= 100)
for (i in 1:100) {
  fun_timing[[i]] <- tapply(prof_list[[i]]$time, paste(prof_list[[i]]$source, prof_list[[i]]$f, sep= "::"), sum)
}

# Here is where the stochastic nature of the profiler complicates things.
# Because of randomness, each replication may have slightly different 
# functions called during profiling
sapply(fun_timing, function(x) {length(names(x))})

# we can also see some clearly odd replications (at least in my attempt)
> sapply(fun_timing, sum)
[1]    2.820    5.605    2.325    2.895    3.195    2.695    2.495    2.315    2.005    2.475    4.110    2.705    2.180    2.760
 [15] 3130.240    3.435    7.675    7.155    5.205    3.760    7.335    7.545    8.155    8.175    6.965    5.820    8.760    7.345
 [29]    9.815    7.965    6.370    4.900    5.720    4.530    6.220    3.345    4.055    3.170    3.725    7.780    7.090    7.670
 [43]    5.400    7.635    7.125    6.905    6.545    6.855    7.185    7.610    2.965    3.865    3.875    3.480    7.770    7.055
 [57]    8.870    8.940   10.130    9.730    5.205    5.645    3.045    2.535    2.675    2.695    2.730    2.555    2.675    2.270
 [71]    9.515    4.700    7.270    2.950    6.630    8.370    9.070    7.950    3.250    4.405    3.475    6.420 2948.265    3.470
 [85]    3.320    3.640    2.855    3.315    2.560    2.355    2.300    2.685    2.855    2.540    2.480    2.570    3.345    2.145
 [99]    2.620    3.650

删除异常复制并转换为data.frame s:

fun_timing <- fun_timing[-c(15,83)]
fun_timing2 <- lapply(fun_timing, function(x) {
  ret <- data.frame(fun= names(x), time= x)
  dimnames(ret)[[1]] <- 1:nrow(ret)
  return(ret)
})

合并复制(几乎肯定会更快)并检查结果:

# function for merging DF's in a list
merge_recursive <- function(list, ...) {
  n <- length(list)
  df <- data.frame(list[[1]])
  for (i in 2:n) {
    df <- merge(df, list[[i]], ... = ...)
  }
  return(df)
}

# merge
fun_time <- merge_recursive(fun_timing2, by= "fun", all= FALSE)
# do some munging
fun_time2 <- data.frame(fun=fun_time[,1], avg_time=apply(fun_time[,-1], 1, mean, na.rm=T))
fun_time2$avg_pct <- fun_time2$avg_time / sum(fun_time2$avg_time)
fun_time2 <- fun_time2[order(fun_time2$avg_time, decreasing=TRUE),]
# examine results
R> head(fun_time2, 15)
                         fun  avg_time    avg_pct
4      base::standardGeneric 0.6760714 0.14745123
20                   NA::FUN 0.4666327 0.10177262
12       methods::initialize 0.4488776 0.09790023
9      kernlab::kernelMatrix 0.3522449 0.07682464
8   kernlab::as.kernelMatrix 0.3215816 0.07013698
11   methods::callNextMethod 0.2986224 0.06512958
1                base::apply 0.2893367 0.06310437
7     imputation::kNN_impute 0.2433163 0.05306731
14              methods::new 0.2309184 0.05036331
10    methods::addNextMethod 0.2012245 0.04388708
3               base::sapply 0.1875000 0.04089377
2               base::lapply 0.1865306 0.04068234
6  imputation::impute_fn_knn 0.1827551 0.03985890
19           NA::.nextMethod 0.1790816 0.03905772
18    NA::.findNextFromTable 0.1003571 0.02188790

结果

从结果来看,与单个案例一样,出现了类似但更强大的画面。也就是说, R 会产生大量开销,library(kernlab)也会让我失望。值得注意的是,由于kernlab是在S4中实现的,因此 R 的开销是相关的,因为S4类比S3类慢得多。

我还要注意,我的个人意见是,清理版本的这可能是一个有用的拉取请求,作为profr的摘要方法。虽然我有兴趣看到别人的建议!