我们可以在两个DStream之间共享火花流状态吗?
基本上我想使用第一个流创建/更新状态,并使用状态来丰富第二个流。
示例:我修改了StatefulNetworkWordCount示例。我正在使用第一个流创建状态,并使用第一个流的计数来丰富第二个流。
val initialRDD = ssc.sparkContext.parallelize(List(("hello", 1), ("world", 1)))
val mappingFuncForFirstStream = (batchTime: Time, word: String, one: Option[Int], state: State[Int]) => {
val sum = one.getOrElse(0) + state.getOption.getOrElse(0)
val output = (word, sum)
state.update(sum)
Some(output)
}
val mappingFuncForSecondStream = (batchTime: Time, word: String, one: Option[Int], state: State[Int]) => {
val sum = state.getOption.getOrElse(0)
val output = (word, sum)
Some(output)
}
// first stream
KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topicsSet)
.flatMap(r=>r._2.split(" "))
.map(x => (x, 1))
.mapWithState(StateSpec.function(mappingFuncForFirstStream).initialState(initialRDD).timeout(Minutes(10)))
.print(1)
// second stream
KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams2, mergeTopicSet)
.flatMap(r=>r._2.split(" "))
.map(x => (x, 1))
.mapWithState(StateSpec.function(mappingFuncForSecondStream).initialState(initialRDD).timeout(Minutes(10)))
.print(50)
在检查点目录中,我可以看到两个不同的状态RDD。
我正在使用spark-1.6.1和kafka-0.8.2.1
答案 0 :(得分:2)
可以通过使用StateDStream
mapWithState
操作的DStream的基础stateMappedDStream.snapshotStream()
所以,灵感来自你的榜样:
val firstDStream = ???
val secondDStream = ???
val firstDStreamSMapped = firstDStream..mapWithState(...)
val firstStreamState = firstDStreamSMapped.snapshotStream()
// we want to use the state of Stream 1 to enrich Stream 2. The keys of both streams are required to match.
val enrichedStream = secondDStream.join(firstStreamState)
... do stuff with enrichedStream ...
答案 1 :(得分:-1)
此方法可能对您有所帮助:
ssc.untion(Seq[Dstream[T]])