我正在尝试实现SGD功能,以便在caffe python中手动更新python中的权重,而不是使用solver.step()
函数。目标是在执行solver.step()
之后匹配权重更新,并通过手动更新权重来匹配权重更新。
设置如下:
使用MNIST数据。将solver.prototxt中的随机种子设置为:random_seed: 52
。确保momentum: 0.0
和base_lr: 0.01
,lr_policy: "fixed"
。完成以上操作,我可以简单地实现SGD更新方程(没有动量,正则化等)。方程式很简单:
W_t + 1 = W_t - mu * W_t_diff
以下是两项测试:
测试1: 使用caffe的forward()和backward()来计算前向传播和后向传播。 对于每个包含权重的图层:
for k in weight_layer_idx:
solver.net.layers[k].blobs[0].diff[...] *= lr # weights
solver.net.layers[k].blobs[1].diff[...] *= lr # biases
接下来,将权重/偏差更新为:
solver.net.layers[k].blobs[0].data[...] -= solver.net.layers[k].blobs[0].diff
solver.net.layers[k].blobs[1].data[...] -= solver.net.layers[k].blobs[1].diff
我运行了5次迭代。
测试2 :运行caffe' solver.step(5)
。
现在,我期望两次测试在两次迭代后产生完全相同的权重。
我在上述每个测试之后保存权重值,并通过两个测试计算权重向量之间的范数差异,我发现它们不是精确的。有人会发现我可能遗漏的东西吗?
以下是整个代码供参考:
import caffe
caffe.set_device(0)
caffe.set_mode_gpu()
import numpy as np
niter = 5
solver = None
solver = caffe.SGDSolver('solver.prototxt')
# Automatic SGD: TEST2
solver.step(niter)
# save the weights to compare later
w_solver_step = copy(solver.net.layers[1].blobs[0].data.astype('float64'))
b_solver_step = copy(solver.net.layers[1].blobs[1].data.astype('float64'))
# Manual SGD: TEST1
solver = None
solver = caffe.SGDSolver('solver.prototxt')
lr = 0.01
momentum = 0.
# Get layer types
layer_types = []
for ll in solver.net.layers:
layer_types.append(ll.type)
# Get the indices of layers that have weights in them
weight_layer_idx = [idx for idx,l in enumerate(layer_types) if 'Convolution' in l or 'InnerProduct' in l]
for it in range(1, niter+1):
solver.net.forward() # fprop
solver.net.backward() # bprop
for k in weight_layer_idx:
solver.net.layers[k].blobs[0].diff[...] *= lr
solver.net.layers[k].blobs[1].diff[...] *= lr
solver.net.layers[k].blobs[0].data[...] -= solver.net.layers[k].blobs[0].diff
solver.net.layers[k].blobs[1].data[...] -= solver.net.layers[k].blobs[1].diff
# save the weights to compare later
w_fwdbwd_update = copy(solver.net.layers[1].blobs[0].data.astype('float64'))
b_fwdbwd_update = copy(solver.net.layers[1].blobs[1].data.astype('float64'))
# Compare
print "after iter", niter, ": weight diff: ", np.linalg.norm(w_solver_step - w_fwdbwd_update), "and bias diff:", np.linalg.norm(b_solver_step - b_fwdbwd_update)
将权重与两个测试进行比较的最后一行产生:
after iter 5 : weight diff: 0.000203027766144 and bias diff: 1.78390789051e-05
我希望这个差异在哪里为0.0
有什么想法吗?
答案 0 :(得分:4)
你得到的几乎是正确的,你只需要在每次更新后将差异设置为零。 Caffe不会自动执行此操作以使您有机会实现批量累积(对于一次重量更新,可以在多个批次中累积渐变,如果您的内存不足以满足所需的批量大小,这可能会有所帮助。)
另一个可能的问题可能是使用cudnn,它的卷积实现是非确定性的(或者如何将其设置为在caffe中使用是精确的)。 一般来说,这应该没有问题,但在你的情况下,它每次导致的结果略有不同,因此权重不同。 如果用cudnn编译caffe,你可以简单地将模式设置为cpu,以防止在测试时发生这种情况。
此外,求解器参数会对重量更新产生影响。如你所知,你应该知道:
在网中,一定不要使用学习率倍增器,通常学习的偏差是权重的两倍,但这不是你实施的行为。因此,您需要确保在图层定义中将它们设置为一个:
param {
lr_mult: 1 # weight lr multiplier
}
param {
lr_mult: 1 # bias lr multiplier
}
最后但并非最不重要的,这里举例说明您的代码在动量,重量衰减和lr_mult方面的样子。在CPU模式下,这会产生预期的输出(无差异):
import caffe
caffe.set_device(0)
caffe.set_mode_cpu()
import numpy as np
niter = 5
solver = None
solver = caffe.SGDSolver('solver.prototxt')
# Automatic SGD: TEST2
solver.step(niter)
# save the weights to compare later
w_solver_step = solver.net.layers[1].blobs[0].data.copy()
b_solver_step = solver.net.layers[1].blobs[1].data.copy()
# Manual SGD: TEST1
solver = None
solver = caffe.SGDSolver('solver.prototxt')
base_lr = 0.01
momentum = 0.9
weight_decay = 0.0005
lr_w_mult = 1
lr_b_mult = 2
momentum_hist = {}
for layer in solver.net.params:
m_w = np.zeros_like(solver.net.params[layer][0].data)
m_b = np.zeros_like(solver.net.params[layer][1].data)
momentum_hist[layer] = [m_w, m_b]
for i in range(niter):
solver.net.forward()
solver.net.backward()
for layer in solver.net.params:
momentum_hist[layer][0] = momentum_hist[layer][0] * momentum + (solver.net.params[layer][0].diff + weight_decay *
solver.net.params[layer][0].data) * base_lr * lr_w_mult
momentum_hist[layer][1] = momentum_hist[layer][1] * momentum + (solver.net.params[layer][1].diff + weight_decay *
solver.net.params[layer][1].data) * base_lr * lr_b_mult
solver.net.params[layer][0].data[...] -= momentum_hist[layer][0]
solver.net.params[layer][1].data[...] -= momentum_hist[layer][1]
solver.net.params[layer][0].diff[...] *= 0
solver.net.params[layer][1].diff[...] *= 0
# save the weights to compare later
w_fwdbwd_update = solver.net.layers[1].blobs[0].data.copy()
b_fwdbwd_update = solver.net.layers[1].blobs[1].data.copy()
# Compare
print "after iter", niter, ": weight diff: ", np.linalg.norm(w_solver_step - w_fwdbwd_update), "and bias diff:", np.linalg.norm(b_solver_step - b_fwdbwd_update)